
Madoko Reference
A Fast Scholarly Markdown Processor

2017-04-11 (version 1.1.0)

Daan Leijen
Microsoft Research

daan@microsoft.com



2

1. Introduction 5
1.1. Madoko philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Installation and usage 9
3. Syntax: Inline elements 11

3.1. Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Sub- and super-script . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Strike-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5. Smart quotes, symbols, and direct links . . . . . . . . . . . . . . . 12

3.5.1. Advanced: changing quotes . . . . . . . . . . . . . . . . . . . 13
3.6. Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7. Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7.1. Image formats . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8. Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9. Escape sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.9.1. Special escapes . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Syntax: Block elements 19

4.1. Headings and rules . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2. Identities and labels . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1. A named heading . . . . . . . . . . . . . . . . . . . . . . . . 20
An unnumbered heading . . . . . . . . . . . . . . . . . . . . . . . . 21
A labeled heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3. Figures and Table Figures . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1. Advanced: sub-figures . . . . . . . . . . . . . . . . . . . . . . 22

4.4. Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5. Definition lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6. Block quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7. Columns: putting blocks next to each other . . . . . . . . . . . . 27
4.8. Code blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8.1. Syntax highlighting . . . . . . . . . . . . . . . . . . . . . . . 29
4.8.2. Escaped code . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8.3. Advanced: Pretty code alignment . . . . . . . . . . . . . . . 32
4.8.4. Advanced: Customizing highlight colors . . . . . . . . . . . . 34
4.8.5. Advanced: Custom syntax highlighting . . . . . . . . . . . . 34
4.8.6. Advanced: taking over code blocks . . . . . . . . . . . . . . 36

4.9. Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9.1. Horizontal rules . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.9.2. Long tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9.3. The width of columns . . . . . . . . . . . . . . . . . . . . . . 39
4.9.4. Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9.5. Book tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10. Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10.1. Plain math and alignment . . . . . . . . . . . . . . . . . . . 42
4.10.2. Using packages . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.10.3. Math commands . . . . . . . . . . . . . . . . . . . . . . . . 44



3

4.10.4. Mathematics in HTML . . . . . . . . . . . . . . . . . . . . 45
4.10.5. Advanced: Generic LaTeX snippets . . . . . . . . . . . . . 45
4.10.6. Advanced: Efficiency of math rendering . . . . . . . . . . . 50
4.10.7. Advanced: Preformatted math . . . . . . . . . . . . . . . . 50
4.10.8. Setting all code to preformatted math . . . . . . . . . . . . 52

4.11. Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11.1. Advanced: Custom tables of contents . . . . . . . . . . . . 53

4.12. Bibliography and Citations . . . . . . . . . . . . . . . . . . . . . 54
4.12.1. Bibliography styles . . . . . . . . . . . . . . . . . . . . . . . 56
4.12.2. Citation styles . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.12.3. Bibliography tooltips and searches . . . . . . . . . . . . . . 58

4.13. Custom blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.13.1. Predefined custom blocks . . . . . . . . . . . . . . . . . . . 60

4.14. Special block elements . . . . . . . . . . . . . . . . . . . . . . . . 62
4.14.1. Advanced: including file fragments . . . . . . . . . . . . . . 63

5. Syntax: Metadata and Styling 65
5.1. Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1. Special metadata keys . . . . . . . . . . . . . . . . . . . . . 65
5.1.2. HTML keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3. LaTeX keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.4. Conditional metadata . . . . . . . . . . . . . . . . . . . . . . 73

5.2. Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3. CSS Attributes and Styling . . . . . . . . . . . . . . . . . . . . . 75

5.3.1. CSS Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2. CSS formatting support . . . . . . . . . . . . . . . . . . . . 76
5.3.3. CSS font family . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.4. CSS colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.5. Complex CSS Layout . . . . . . . . . . . . . . . . . . . . . . 79
5.3.6. Floating blocks . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.7. Special attributes . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.8. Special attribute classes . . . . . . . . . . . . . . . . . . . . . 84

5.4. Metadata rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1. Names of predefined elements . . . . . . . . . . . . . . . . . 86
5.4.2. Advanced: Styling in CSS . . . . . . . . . . . . . . . . . . . 87

5.5. Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1. Advanced: Custom numbering . . . . . . . . . . . . . . . . . 87
5.5.2. Advanced: Reset counters . . . . . . . . . . . . . . . . . . . 88
5.5.3. Advanced: Display format . . . . . . . . . . . . . . . . . . . 88

5.6. Advanced: Replacement . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.1. Advanced: Regular expression replacement . . . . . . . . . . 90
5.6.2. Advanced recursion and replacement . . . . . . . . . . . . . 91

References 93
A. Appendix 95

A.1. Command line options . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2. Slide shows and presentations . . . . . . . . . . . . . . . . . . . . 96

A.2.1. Using Reveal.js . . . . . . . . . . . . . . . . . . . . . . . . . 97



4

A.2.2. Using Beamer . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3. Advanced: Customizing citations . . . . . . . . . . . . . . . . . . 98
A.4. Advanced: Not using BibTeX . . . . . . . . . . . . . . . . . . . . 99
A.5. Advanced: packages in dynamic math mode . . . . . . . . . . . . 100
A.6. Advanced: Using Prettify to highlight code . . . . . . . . . . . . 101
A.7. Advanced styling in LaTeX . . . . . . . . . . . . . . . . . . . . . 101
A.8. Unicode characters . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.8.1. Unicode in LaTeX . . . . . . . . . . . . . . . . . . . . . . . 103
A.8.2. Unicode font selection in LaTeX . . . . . . . . . . . . . . . . 103

A.9. Recognized character entities . . . . . . . . . . . . . . . . . . . . 104
A.10. Definitions of predefined custom blocks . . . . . . . . . . . . . . 113
A.11. License and attribution . . . . . . . . . . . . . . . . . . . . . . . 114



Chapter 1

Introduction

Madoko is a fast javascript Markdown processor written in Koka It started out
as a demo program for the new, strongly typed, Koka language and the name
comes from “Markdown in Koka”.

Madoko can both be run local as a command-line program, or as a full on-
line experience on Madoko.net with storage and collaboration through dropbox
or github.

The online editor can also edit files on the local disk, or run LaTeX locally,
using the madoko local program.

1.1. Madoko philosophy
The main design goal of Madoko is to enable light-weight creation of high-quality
scholarly1 and industrial documents for the web and print, while maintaining
John Gruber’s Markdown philosophy of simplicity and focus on plain text read-
ability.

The popularity of Markdown is not accidental, and it is great for writing
prose: it is super simple and straightforward to create good looking HTML
documents. But for more serious use Markdown falls short in several areas, and
Madoko provides many essential additions for larger documents:

• Extensive support for labeling and in-document references.
• Tables with custom borders, column alignment, multicolumn spans, colors

etc.
• Great citation support, using standard BibTeX entries with either BibTeX

styles (.bst) or Citation Language styles (.csl).
• Excellent support for advanced mathematics (eiπx) (and powerful pack-

ages like TikZ and PSTricks) with scalable vector images (SVG) in web
pages.

1There is actually an effort to define scholarly markdown.

http://daringfireball.net/projects/markdown/syntax
http://koka.codeplex.com
http://koka.codeplex.com
https://www.madoko.net
https://www.dropbox.com/home
https://github.com
https://www.npmjs.com/package/madoko-local
http://blog.martinfenner.org/2013/06/17/what-is-scholarly-markdown/


6 Chapter 1. Introduction

• Great LATEX integration where one can use any LaTeX style or package,
and any LaTeX document styles, like the ones provided by most publishers.

• Excellent support for static syntax highlighting and transformation of code
fragments.

• Automatic numbering of sections, figures, examples, etc.
• Title page and table-of-contents generation.
• Support for user defined custom blocks, like Theorem, Abstract, Figure,

etc.
• Styling for both HTML and LaTeX output through standard CSS at-

tributes and CSS metadata rules.
• Powerful document transformations through replacement rules.
• Create great presentations for both the web and in print.
• Compatible with most common Markdown extensions, such as footnotes,

mathematics, attributes, etc.

Moreover the online editor Madoko.net supports:

• Full online editing, previewing, and document generation.
• Seamless sharing and collaboration with other authors through dropbox

and github; it is very easy to work together on a document where changes
are continuously merged.

• Full support for mathematics and bibliographies through server-side La-
TeX; no need to install LaTeX yourself.

• This is an HTML5 app and also works offline. With the madoko local
program you even access local files on disk, and run LaTeX locally.

Instead of a plethora of backends, Madoko concentrates on generating either
HTML or high-quality PDF files through LaTeX. There has been a lot of ef-
fort in Madoko to make the LaTeX generation robust and customizable while
integrating well with the various academic document- and bibliography styles.
This makes it great for writing articles using just Madoko and get both a high-
quality print format (PDF) and a great looking HTML page. Look at this
scientific article for an example:

LaTeX/PDF HTML Edit in Madoko.net

or this slide-show presentation:

https://www.madoko.net
https://www.dropbox.com/home
https://github.com
https://www.npmjs.com/package/madoko-local
http://en.wikibooks.org/wiki/LaTeX
http://research.microsoft.com/en-us/um/people/daan/madoko/samples/effects/out/effects.pdf
http://research.microsoft.com/en-us/um/people/daan/madoko/samples/effects/out/effects.html
https://www.madoko.net/editor.html?%23url=http://research.microsoft.com/en-us/um/people/daan/madoko/samples/effects/effects.mdk%26options=%7B"delayedUpdate":"true"%7D


1.2. License 7

LaTeX/PDF HTML Edit in Madoko.net

Also, you can look at the PDF and source of this document. In the future, we
plan to support e-books through the ePub format too.

Here are some other (large!) examples of complicated documents, click on
the links to edit the document directly in Madoko.net:

• The anatomy of programming languages: A large part of the AoPL book
by Prof. Dr. William Cook.

• Software model checking with IC3: A math-heavy presentation for the
VTSA summer school 2014 by Dr. Nikolaj Bjørner and others.

• The Madoko reference manual: This document by yours truly.

1.2. License
Madoko is a javascript program (written in Koka) that runs on Node.js. Madoko
is free software available under the Apache 2.0 license at madoko.codeplex.com.
Madoko uses various other open-source libraries, see Appendix A.11 for a full
list.

http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/out/slidedemo.pdf
http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/out/slidedemo.html
https://www.madoko.net/editor.html?%23url=http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/slidedemo.mdk%26options=%7B"delayedUpdate":"true"%7D
reference.mdk.txt
http://en.wikipedia.org/wiki/EPUB
https://www.madoko.net
https://www.madoko.net/editor.html?%23url=http://research.microsoft.com/en-us/um/people/daan/madoko/samples/AoPL/anatomy.mdk%26options=%7B"delayedUpdate":"true"%7D
https://github.com/w7cook/AoPL
https://www.madoko.net/editor.html?%23url=http://research.microsoft.com/en-us/um/people/daan/madoko/samples/horn/horn.mdk%26options=%7B"delayedUpdate":"true"%7D
https://www.madoko.net/editor.html?%23url=http://research.microsoft.com/en-us/um/people/daan/madoko/samples/reference/reference.mdk%26options=%7B"delayedUpdate":"true"%7D
http://koka.codeplex.com
http://nodejs.org
https://madoko.codeplex.com/license
http://madoko.codeplex.com


8 Chapter 1. Introduction



Chapter 2

Installation and usage

The recommended way to use Madoko now is online on Madoko.net in combi-
nation with Dropbox or Github to store your files and collaborate and share
with other users.

Nevertheless, Madoko works great as a command line tool as well, and it is
good to have a solid backup. The easiest way to use Madoko is as a command
line tool is by using Node.js (which works on many platforms, like Windows,
MacOSX, Linux etc). Madoko can also run inside a web browser or as a .NET
executable. Installation under Node.js is very easy:

• Ensure you have Node.js installed on your system (and ensure that the
Node installation directory is in your PATH).

• Open a command line window and run the Node package manager to
install Madoko:
npm install madoko -g

and you are done. Translating a markdown document is done simply as:

• madoko -v mydoc.mdk

which generates mydoc.html. The -v flag gives more verbose output. To also
generate a PDF file, use:

• madoko --pdf -vv --odir=out mydoc

where --odir puts all output files in the out directory. To generate a PDF, you
need to have LaTeX installed on your system, which is also required for math-
ematics and bibliographies. We recommend the full TeXLive LaTeX system as
it is available for Windows, Linux and MacOSX, and is used on the Madoko.net
server as well.

For PDF output, we added an extra verbose flag in order to see any warnings
LaTeX produces. A full description of all command line options can be found
in Appendix A.1.

https://www.madoko.net
https://www.dropbox.com/home
https://github.com
http://nodejs.org
https://www.tug.org/texlive
https://www.madoko.net


10 Chapter 2. Installation and usage



Chapter 3

Syntax: Inline elements

Madoko is fully compatible with basic Markdown syntax and passes the en-
tire test suite. It also implements most extensions, like Github flavored mark-
down, PanDoc, Markdown Extra, and multi-markdown, and it adds quite a
few features itself to make it really useful for writing academic and industrial
documents.

We assume that the reader is familiar with basic markdown syntax.
In Madoko, tab’s are considered to be equivalent to 4 spaces. It is therefore best
to configure your editor to view tabs as 4 spaces wide or documents may look
off.

3.1. Emphasis
Enclose words in asterisks (*) or underscores (_) to emphasize them. Use double
asterisks or underscores for strong emphasis:

Here is _some emphasis_, or using *asterisks*.
Or use __strong emphasis__, or like **this**.

Here is some emphasis, or using asterisks. Or use strong emphasis, or
like this.

3.2. Code
You can include pre-formatted text in regular text using back-quotes (`).

http://daringfireball.net/projects/markdown/syntax
https://help.github.com/articles/github-flavored-markdown
https://help.github.com/articles/github-flavored-markdown
http://johnmacfarlane.net/pandoc
http://michelf.ca/projects/php-markdown/extra
http://fletcherpenney.net/multimarkdown
http://daringfireball.net/projects/markdown/syntax


12 Chapter 3. Syntax: Inline elements

For emphasis, use the `<strong>` tag in HTML.
We can use back-quotes by using multiple ``back`quotes``.

For emphasis, use the <strong> tag in HTML. We can use back-quotes by
using multiple back`quotes.

Section 4.8 discusses code in more detail including syntax highlighting.

3.3. Sub- and super-script
Using tilde (~) and hat (^), you can format inline text as sub- and super-script
respectively. Inside script, no white space is allowed to prevent mistakes. If you
need white space you can still use an escaped space (\ ).

Here is how you write H~2~O or E=MC^2^.
Please use escapes for~longer\ script~.

Here is how you write H2O or E=MC2. Please use escapes forlonger script.

3.4. Strike-out
Enclose anything in two tildes and it will strike out the content:

There is a ~~strike out~~ here.

There is a strike out here.

3.5. Smart quotes, symbols, and direct links
Madoko will quote smartly using proper open and closing quotes for anything
enclosed in single quotes ('), double quotes ("), or French quotes (<< and >>).

"double quoted"
'single quoted'
<<guillemot quoted>>



3.5. Smart quotes, symbols, and direct links 13

<http://www.google.com>

“double quoted”
‘single quoted’
«guillemot quoted»
http://www.google.com

Note that text enclosed in < and > brackets gets interpreted as direct link.
Madoko will only smart quote single quotes if the last quote is not directly fol-
lowed by a letter. This often prevents wrong quotation with words like “can’t”:

'really, I can't do this', he said.
I can't and mustn't do this.

‘really, I can’t do this’, he said. I can’t and mustn’t do this.

Madoko will also replace multiple dashes and dots to a proper symbol:

Please distinguish a minus sign, -, from the _en dash_ which
is used to separate spans or pages, like 1--20, and the
_em dash_ which is even longer and sometimes used for
quotation attribution. --- Oscar Wilde.
Three dots ... should be close together.

Please distinguish a minus sign, -, from the en dash which is used to sep-
arate spans or pages, like 1–20, and the em dash which is even longer and
sometimes used for quotation attribution. — Oscar Wilde.
Three dots … should be close together.

3.5.1. Advanced: changing quotes
When replacing quotes, Madoko just inserts the right entity, like an &ldquo;
for a left double quote (“). As described in Section 5.2 we can redefine entities,
and use that to change the quotes. For example, in some obscure countries, like
the Netherlands, people like to start a quotation at „the bottom” instead. You
can get this behavior by adding the following metadata rule:

ldquo: &bdquo;

Or Japanese style:

http://www.google.com


14 Chapter 3. Syntax: Inline elements

lsquo: [&#12300;]{font-family:"MS Gothic"}
rsquo: [&#12301;]{font-family:"MS Gothic"}
ldquo: &#12302;
rdquo: &#12303;

to single quote 「like this」

3.6. Links
Madoko has three kinds of links, reference links, inline links, and direct links.
The inline links have the linked text between square brackets and the URL fol-
lows between parenthesis, while direct links are simply enclosed between angled
brackets:

Here is a link to [Google](http://www.google.com).
Or as a direct link: <http://www.google.com>.

Here is a link to Google. Or as a direct link: http://www.google.com.

Generally, reference links are preferred. Here, the link is defined separately after
the body of text such that it looks less cluttered:

Here is a link to [Google] again.
We can also [Change the text][Google].

[Google]: http://www.google.com "Google"

Here is a link to Google again. We can also Change the text.

Note how [Google] is simply a shorthand for [Google][Google]. The title in
double quotes in the link definition is optional. Link definitions do not have to
follow the text immediately and can be defined anywhere in the document.

3.7. Images
Images are included using a regular link prefixed with an exclamation mark (!).

A butterfly: ![bfly].

[bfly]: images/butterfly-200.png "A Monarch" { width: 100px }

http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com


3.8. Footnotes 15

A butterfly: .

This example also shows the use of attributes (Section 5.3.1) where we can
specify the width, height, vertical-align, zoom, and tranform-rotate at-
tributes of the image.
Madoko.net: You can use the Insert File menu to include images, or just
drag&drop them directly into the editor. Just watch the file size as images
larger than about 1Mb are rejected by the Madoko server.

3.7.1. Image formats
Sometimes different backends require different image formats. Often for PDF
output, a .pdf or .eps image is preferred while this format is not supported in
the HTML backend. It is possible to provide images in multiple formats – for
convenience, the HTML backend will by default try to load a .png image if a
.pdf or .eps image is specified.

More generally, you can provide selection pattern as a comma separated list
in the image url, for example:
images/butterfly-200.[ps,svg,png]

This specifies three available images where each backend chooses one based on
the best results for that backend. The default extensions that are supported by
each backend in order of preference are:

• html: .svg, .png, .jpg, .jpeg, .gif, .tif, .tiff, .bmp, .jpx, .jp2.
• pdf (latex): .pdf, .eps, .ps, .png, .jpg, .jpeg.

3.8. Footnotes
Footnotes are written as regular link definitions prefixed with a hat (^) charac-
ter. This is the syntax originally proposed by John Gruber.

Here is a footnote[^fn].

[^fn]: This is the content of the example footnote.
You can continue a footnote by indenting content.
And notice the back link.

https://www.madoko.net
http://daringfireball.net/2005/07/footnotes


16 Chapter 3. Syntax: Inline elements

Here is a footnote2.

3.9. Escape sequences
If you want to use a special character directly without a special Markdown
meaning, precede it with a backslash (\). For example, to use a star (*) without
causing emphasis, you can write \*.

Madoko will never escape a letter or digit and always keep the backslash, so
\a becomes “\a” while \& becomes just “&”. Thus, you can safely write windows
style file names without needing an escape:

Would you like c:\foo\bar to be deleted? Yes\No.
Here are some other escapes: \\, \#, \*, \|, and \0.

Would you like c:\foo\bar to be deleted? Yes\No. Here are some other
escapes: \, #, *, |, and \0.

This approach is different than that of Markdown which only escapes a specific
set of characters, while Madoko escapes everything that is not a letter or digit.
The advantage of the approach of Madoko is that this is easy to remember, while
trying to remember a specific set of special escape characters is near impossible.
This is similar to the PanDoc approach to escape sequences.

3.9.1. Special escapes
Some characters are translated specially when escaped. If you escape a space
(\ ), it is translated as a non-breakable space, while a backslash at the end
of a line causes a hard line break to be inserted. The latter is recommended
over using the standard Markdown way of using two spaces at the end of a line
because it leaves visual clue that a line break occurs.

Here is non\ breakable space and a hard\
line break with a \* star.

Here is non breakable space and a hard
line break with a * star.

2This is the content of the example footnote. You can continue a footnote by indenting
content. And notice the back link.

http://johnmacfarlane.net/pandoc


3.9. Escape sequences 17

Finally, the escape sequence \/ translates to nothing; this can be very useful to
separate certain constructs. For example, emphasis is suppressed if the under-
scores appear inside a word, as in my_example_here. Using the empty escape
sequence we can emphasize inside words too: to get myexamplehere, we can
simply write my\/_example_\/here.



18 Chapter 3. Syntax: Inline elements



Chapter 4

Syntax: Block elements

4.1. Headings and rules
Headings are written by prefixing with one or more hash characters (#):
# A level one heading
## A level two heading
### A level three heading
...
###### Up to level six

It is also possible to write level one and level two headers using a line of three
or more equal (=) or dash (-) characters:
A level one heading
===================

A level two heading
-------------------

But hash-headings are generally preferred since a three or more dashes (or un-
derscores or asterisks) are also used for horizontal rules:

Above...

------------

and below the line.

Above…

and below the line.



20 Chapter 4. Syntax: Block elements

4.2. Identities and labels
Madoko has extensive support for numbering and referencing elements in a
document. Elements are given an identity using attributes (see Section 5.3.1).
For example, here we give an identifier myheading to a heading:

### A named heading { #myheading }

And we can refer to it

* Using an explicit [link](#myheading)
(or [reference][#myheading]).

* Or using an implicit link to Section [#myheading].
* Or we can just see its label, namely &myheading;.

4.2.1. A named heading
And we can refer to it

• Using an explicit link (or reference).
• Or using an implicit link to Section 4.2.1.
• Or we can just see its label, namely 4.2.1.

Using an implicit link is generally recommended. When type setting a refer-
ence such as Section 4.2.1, Madoko automatically inserts a non-breakable space
between “Section” and the reference3. Unlike LaTeX there is no need to insert
such non-breakable space yourself.

Of course, we can refer to any element that has an identity, like equations,
figures, tables, etc. Here is an example with an equation (see Section 4.10):

In Equation [#euler] we define [Euler]'s number $e$:

~ Equation { #euler; caption:"Euler's formula" }
e = \lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n
~

[Euler]: http://en.wikipedia.org/wiki/Euler's_number

3Madoko will still use a regular space if you use an explicit line break between “Section”
and the reference in the source.



4.3. Figures and Table Figures 21

In Equation (1) we define Euler’s number e:

e = lim
n→∞

(
1 +

1

n

)n

(1)

An implicit link such as [#myheading] is a shorthand for an explicit link of the
form [&myheading;](#myheading), i.e. a local reference to #myheading which
displays the entity &myheading;. In Madoko, an entity name like &myheading;
is replaced by the label value of the referred block (see Section 5.2). For headers,
this is by default the header number (as we will see in Section 5.5) but you can
set any label you’d like. Using a minus (-) in the attributes clears all attributes,
which is used in the following example to suppress the default numbering:

### An unnumbered heading { - }
### A labeled heading { -; id: myheading1; label: "my label" }
Let's refer to Section [#myheading1].

An unnumbered heading
A labeled heading
Let’s refer to Section my label.

Also, any local link, like ”Section 4.2.1“ or a citation like ”[2]”, displays a tooltip
when hovering above it. The tooltip content is determined by the caption
attribute of the target element. For headings, this is by default the heading
text.
Madoko.net: The editor will automatically display and complete section ref-
erences (and citations) once you start typing a # (or @). You can also press
Ctrl+Space to invoke auto-completion explicitly.

4.3. Figures and Table Figures
Figures can be included using the Figure custom block (see Section 4.13):

Figure [#fig-monarch] shows how to put an image in a figure.

~ Figure { #fig-monarch; caption: "A Monarch butterfly." }
The ![monarch] image.
~

http://en.wikipedia.org/wiki/Euler's_number
https://www.madoko.net


22 Chapter 4. Syntax: Block elements

The image.

Figure 1. A Monarch butterfly.

[monarch]: butterfly-200.png { width:100px; vertical-align:middle }

Figure 1 shows how to put an image in a figure.
A figure can be given an identity and referred to just like headings. The caption
attribute gives the caption of the figure which is also used in the table-of-figures.
A Figure can have a page-align attribute that can be set to top, bottom,
topbottom, page, here, forcehere, and inplace. This is ignored in the HTML
output but used in LaTeX to influence where a figure is placed on a page. The
.wide attribute is used in LaTeX to have figures span both columns in a two-
column document class.

Besides regular figures, there is also the Table Figure element for tables:

Table [#tab-sample] shows an example table figure.

~ TableFigure { #tab-sample; \
caption: "Modelle mit unterschiedlich geschätztem baseline hazard"; }

| | $c(t)$ ||||
| |---------|---------|---------|---------------------|
| | (A0) | (A1) | (A2) | (A3) |
| | ohne | Log | Polynom | Stückweise konstant |
|:----------------|:-------:|:-------:|:-------:|:-------------------:|
| Log likelihood | -6.798 | -6.733 | -6.715 | -6.686 |
| Pseudeo $R^{2}$ | 0,048 | 0,057 | 0,059 | - |
| AIC | 13.615 | 13.489 | 13.456 | 13.483 |
| BIC | 13.711 | 13.594 | 13.580 | 14.009 |
| N | 105.484 | 105.484 | 105.484 | 105.484 |
|-----------------|---------|---------|---------|---------------------|
{ .booktable }
~

Table 1 shows an example table figure.

4.3.1. Advanced: sub-figures
You can also place multiple sub-figures inside a figure using the SubFigure and
SubFigureRow blocks. Here is an example:



4.4. Lists 23

c(t)
(A0) (A1) (A2) (A3)
ohne Log Polynom Stückweise konstant

Log likelihood -6.798 -6.733 -6.715 -6.686
Pseudeo R2 0,048 0,057 0,059 -
AIC 13.615 13.489 13.456 13.483
BIC 13.711 13.594 13.580 14.009
N 105.484 105.484 105.484 105.484

Table 1. Modelle mit unterschiedlich geschätztem baseline hazard

~ Begin Figure { #fig-subfigs; caption:"Examples of sub figures." }
~ Begin SubFigureRow { vertical-align: bottom }
~ SubFigure { #fig-subfig1; caption:"A butterfly" }
![monarch]
~
~ SubFigure { #fig-subfig2; caption:"A matrix"; }
~~ Math
A_{m,n} =
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}

~~
~
~ End SubFigureRow
~ Begin SubFigureRow
~ SubFigure { #fig-subfig3; caption:"A textual subfigure" }
One more sub-figure with some text.
~
~ End SubFigureRow
~ End Figure

We can refer to the Monarch sub-figure [#fig-subfig1] just like any other figure.

We can refer to the Monarch sub-figure 2a just like any other figure.

4.4. Lists
Unordered lists are created simply by using an asterisks (*), plus (+), or dash
(-) as item markers preceded by an empty line (or otherwise it is considered



24 Chapter 4. Syntax: Block elements

(a) A butterfly

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
am,1 am,2 · · · am,n


(b) A matrix

One more sub-figure with some text.
(c) A textual subfigure

Figure 2. Examples of sub figures.

part of a paragraph):

Groceries:

* Banana
* Bread

- white
- whole grain

* Basil

Groceries:
• Banana
• Bread

– white
– whole grain

• Basil

Each item marker must be followed by a space. You can created ordered lists
using numbers followed by a dot and space. Also long list items can be wrapped
by indenting the text for each item:

1. An ordered list example.
With some longer items.

2. An another item
with more text.

1. An ordered list example. With some longer items.



4.5. Definition lists 25

2. An another item with more text.

Normally, the content of each list item is just treated as text and not as a
paragraph. If there are any blank lines in the entire list, each item is typeset
with a surrounding paragraph which makes the list a bit looser for HTML
output:

3. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus.

3. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.

3. Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
Suspendisse id sem consectetuer libero luctus adipiscing.

3. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam
hendrerit mi posuere lectus.

4. Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus.

5. Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Sus-
pendisse id sem consectetuer libero luctus adipiscing.

Note how the specific numbers used in the list do not matter, except that the
first item determines the start number of the enumeration.

For ease of formatting, unordered lists get a class assigned corresponding to
their first bullet:

1. A bullet * gets class list-star (default display as •).
2. A bullet + gets class list-plus (default display as ■).
3. A bullet - gets class list-dash (default display as –).

This can be used in CSS or Latex to customize how the bullets are displayed.

4.5. Definition lists
Definition lists are used to define terms. Each term must fit on one line and
is followed by one or more definitions. Each definition starts with one or two
spaces followed by a tiled (~) or colon (:). Each definition must be indented by
four spaces.



26 Chapter 4. Syntax: Block elements

Abstract syntax
~ The conceptual structure (illustrated by the pictures) is called
the abstract syntax of the language.

Concrete syntax
~ The particular details and rules for writing expressions as strings
of characters is called the concrete syntax.

~ Perhaps some other meaning too?

Abstract syntax
The conceptual structure (illustrated by the pictures) is called the ab-
stract syntax of the language.

Concrete syntax
The particular details and rules for writing expressions as strings of
characters is called the concrete syntax.
Perhaps some other meaning too?

Madoko has an extension to also allow definition lists to be specified where each
term started with as a regular * list and each definition with a colon ::

* Abstract syntax
: The conceptual structure (illustrated by the pictures) is called
the abstract syntax of the language.

* Concrete syntax
: The particular details and rules for writing expressions as strings
of characters is called the concrete syntax.

Abstract syntax
The conceptual structure (illustrated by the pictures) is called the ab-
stract syntax of the language.

Concrete syntax
The particular details and rules for writing expressions as strings of
characters is called the concrete syntax.

The advantage of using this style of definition lists is that it makes your docu-
ment more portable: when a simpler markdown processor is used, such list will
still render somewhat nicely as:



4.6. Block quotes 27

• Abstract syntax : The conceptual structure (illustrated by the pic-
tures) is called the abstract syntax of the language.

• Concrete syntax : The particular details and rules for writing expres-
sions as strings of characters is called the concrete syntax.

4.6. Block quotes
Block quotes are written just as in email using > angle brackets:

Let's start a block quote:
> Of life's two chief prizes, beauty and truth,
> I found the first in a loving heart and the
> second in a laborer's hand.\
> &emsp;&emsp; --- Khalil Gibran

Let’s start a block quote:

Of life’s two chief prizes, beauty and truth, I found the first in
a loving heart and the second in a laborer’s hand.

— Khalil Gibran

Just like lists, block quotes can be nested and contain other block elements.

4.7. Columns: putting blocks next to each other
Using the Columns and Column custom blocks we can put block elements next
to each other on a page. Use the width attribute to control the width of each
column. Any columns without width are evenly divided over the remaining
space.

~ Begin Columns
~ Column { width:40% }
Here is a long paragraph.
Here is a long paragraph.
Here is a long paragraph.
Here is a long paragraph.
Here is a long paragraph.
Here is a long paragraph.
Here is a long paragraph.
~
~ Column



28 Chapter 4. Syntax: Block elements

A butterfly ![bfly]
~
~ Column { width:5em}
~~ Center
$e = mc^2$.
~~
~
~ End Columns

Here is a long paragraph. Here
is a long paragraph. Here is
a long paragraph. Here is a
long paragraph. Here is a long
paragraph. Here is a long para-
graph. Here is a long para-
graph. A butterfly e = mc2.

4.8. Code blocks

You can write preformatted code simply by indenting the code with a tab char-
acter or at least four spaces. For example:

<a href="foo.com">a link in html</a>

<a href="foo.com">a link in html</a>

Another way to write code is to used fenced code blocks. These start with at
least three backticks (`) and goes on to the first line containing the same number
of backticks. Moreover, you can include the language name after the backticks:

``` html
<a href="foo.com">a link in html</a>
```

<a href="foo.com">a link in html</a>



4.8. Code blocks 29

4.8.1. Syntax highlighting
As we can see from the previous example, Madoko will automatically perform
(static) syntax highlighting for any code fragment that has the language key
set. For a fenced code block, Madoko automatically adds the language key
when the language is specified.

Internally, Madoko uses the Monarch library to do syntax highlighting. This
means that also the PDF output through LaTeX will be fully highlighted (oh
what a joy to no longer having to remember the vagaries of the listing pack-
age). The standard library contains some default language definition, like Java,
JavaScript, C#, HTML, Ruby, and Python.

A Haskell keyword like `instance`{language:haskell} can be highlighted inline.
Or some Ruby code block:
``` Ruby
# ruby pi - how to calculate pi with ruby.
num = 4.0
pi = 0
plus = true
den = 1
while den < 10000000

if plus
pi = pi + num/den
plus = false

else
pi = pi - num/den
plus = true

end
den = den + 2

end

puts "PI = #{pi}" # calculated value of pi
```

A Haskell keyword like instance can be highlighted inline. Or some Ruby
code block:
# ruby pi - how to calculate pi with ruby.
num = 4.0
pi = 0
plus = true
den = 1
while den < 10000000

if plus
pi = pi + num/den



30 Chapter 4. Syntax: Block elements

plus = false
else
pi = pi - num/den
plus = true

end
den = den + 2

end

puts "PI = #{pi}" # calculated value of pi

If you use a particular language a lot in your document, you may want to set it
as the default language using a metadata rule. For example:
pre,code {
language: JavaScript;

}

If you want to disable syntax highlighting for a particular code fragment, you
can set the language key to empty. To disable highlighting completely, set the
Highlight metadata key to False.

For HTML, it is also possible to use dynamic syntax highlighting with the
Prettify library, see Appendix A.6 for more information.

4.8.2. Escaped code
Madoko allows you to escape back to inline Madoko syntax inside code by
bracketing inside \( and \). This can be nice to insert special looking symbols
in the code while maintaining full automatic syntax highlighting for all the
surrounding code:

``` javascript
function sqr( x ) {
var \(&pi;\) = 3.141593;
return x*x /* ensures \(_result_ $\ge$ 0\) on return.*/

}
```

function sqr( x ) {
var π = 3.141593;
return x*x /* ensures result ≥ 0 on return.*/

}

This is especially powerful in combination with replace attributes (Section 5.6).

http://code.google.com/p/google-code-prettify


4.8. Code blocks 31

For example, in this document, we have the following metadata rules:

pre,code {
replace: "/==>/\(&rArr;\)/g";

}

which makes it easy to insert an implication symbol in code:

Look at implication (1) in the following code:
```javascript
function implies(x,y) { x ==> y } \((**1**)\)
```

Look at implication (1) in the following code:
function implies(x,y) { x ⇒ y } (1)

Each escaped piece of code is wrapped in a code-escaped element. This can
be used to for example render all escaped text in a serif font:

.code-escaped {
font-family: serif;

}

Finally, you can use the .noescape class to suppress escaping within a code
block.

When encountering a replaced piece of text, the syntax highlighter treats it
by default as whitespace. It is possible to specify though what characters the
syntax highlighter sees using the bar format: \(highlight|replacement\) where
highlight is used for the purpose of syntax highlighting (and alignment) and
replacement is the replacement text in the output. For example, to colorize our
implication symbol as a keyword, we can do:

Look at highlighted implication (1) in the following code:
```javascript
function implies(x,y) { x \(return|&rArr;\) y } \((**1**)\)
```

Look at highlighted implication (1) in the following code:
function implies(x,y) { x ⇒ y } (1)



32 Chapter 4. Syntax: Block elements

4.8.3. Advanced: Pretty code alignment
When writing high quality articles containing code fragments, it often looks best
when using a proportional font instead of monospace. However, it becomes hard
to align the code properly in such cases. Madoko offers a special pretty mode
for advanced code alignment inspired by the excellent lhs2tex tool by Andres
Löh.

We use a proportional font, but everything preceded by 2 or more spaces
is aligned properly:
``` Haskell { .pretty }
data Exp = Number Int

| Add Exp Exp
| Subtract Exp Exp
| Multiply Exp Exp
| Divide Exp Exp
| Variable String -- added
deriving (Eq)

```

We use a proportional font, but everything preceded by 2 or more spaces
is aligned properly:
data Exp = Number Int

| Add Exp Exp
| Subtract Exp Exp
| Multiply Exp Exp
| Divide Exp Exp
| Variable String – added
deriving (Eq)

Even though the font used is proportional everything which is preceded by 2
or more spaces is aligned. If something is indented more, there is some default
indentation being added. For example:

``` haskell { .pretty; replace: "/->/\(->|&rarr;\)/g"; }
substitute1 :: (String, Int) -> Exp -> Exp
substitute1 (var, val) exp = subst exp where
subst (Number i) = Number i
subst (Add a b) = Add (subst a) (subst b)
subst (Subtract a b) = Subtract (subst a) (subst b)
subst (Multiply a b) = Multiply (subst a) (subst b)
subst (Divide a b) = Divide (subst a) (subst b)

http://www.andres-loeh.de/lhs2tex/


4.8. Code blocks 33

subst (Variable name) = if var == name
then Number val
else Variable name

```

substitute1 :: (String, Int) → Exp → Exp
substitute1 (var, val) exp = subst exp where
subst (Number i) = Number i
subst (Add a b) = Add (subst a) (subst b)
subst (Subtract a b) = Subtract (subst a) (subst b)
subst (Multiply a b) = Multiply (subst a) (subst b)
subst (Divide a b) = Divide (subst a) (subst b)
subst (Variable name) = if var == name

then Number val
else Variable name

Note that we used a replacement expression to replace arrows with their proper
symbol. To make alignment and syntax highlighting work properly, we used the
bar format. In this case we wrote \(->| which makes the replacement count for
2 characters for alignment purposes (and uses -> for the syntax highlighter). In
LaTeX the samples generally align very nice.
Finally, for really pretty code, it generally helps to add more replacements. For
example, here is a sample from the lhs2tex manual:

``` Haskell { .pretty; \
replace:"//->/\(->|[&rarr;]{.serif}\)//\\(?![()])/\(&lambda;\)//g"; \
replace:"/_(?=[a-zA-Z])/\(_|&lowline;\)/g"; \
replace:"/([a-zA-Z])(\d)\b/\(\1~\2~\)/g"; \

}
rep_alg = ( \_ -> \m -> Leaf m

, \lfun rfun -> \m -> let lt = lfun m
rt = rfun m

in Bin lt rt "hi"
)

replace_min t = (cata_tree rep_alg t) (cata_tree min_alg t)
```

http://www.andres-loeh.de/lhs2tex/


34 Chapter 4. Syntax: Block elements

rep alg = ( λ_ → λm → Leaf m
, λlfun rfun → λm → let lt = lfun m

rt = rfun m
in Bin lt rt ”hi”

)
replace min t = (cata tree rep alg t) (cata tree min alg t)

Note that to improve the rendering, we added replacements for underscores
inside identifiers with &lowline; and subscripted digits that end an identifier.
Also, we replaced right arrows and lambda bindings. See Section 5.6.2 for more
information about complex replacements.

4.8.4. Advanced: Customizing highlight colors
The syntax highlighter for a language assigns specific class names to each token.
Using these classes we can customize how they are displayed. The standard class
names that are often used include:

identifier, operators, keyword, string, escape, comment, commentdoc,
constant, entity, tag, info, warn, error, debug, regexp, attribute, value,
constructor, namespace, header, type, predefined, invalid, code, codekeyword,
typevar, delimiter, number, variable, meta, bold, and italic.

To customize the appearance we can just use a CSS rule in the metadata
section where we combine a token class name with .token:
.token.identifier { font-style: italic }
.token.string.escape { color: gray }

For identifiers in pretty code (Section 4.8.3), the token rendering is determined
in combination with the .ptoken class:
@if tex {
.ptoken.keyword { font-family: sans-serif }

}

4.8.5. Advanced: Custom syntax highlighting
Madoko can actually load syntax specifications dynamically to perform syntax
highlighting. For example, suppose you are a blogger that is writing about
the new Javascript module proposal, and you would like to highlight the new
module or export keywords. Unfortunately, regular Javascript highlighting does
no such thing:
// Javascript 5 modules
module Math {
export function sum(x, y) {
return x + y;

}



4.8. Code blocks 35

export var pi = 3.141593;
}

In Madoko, you can add your own syntax highlighter quite easily. First, register
your new language definition in the metadata:
Colorizer: javascript
Colorizer: javascript5

Because we are going to extend javascript, we also mention that language.
Now you need a file javascript5.json which will contain the new language
definition as JSON:
{ "name": "javascript5",

"extend": "javascript",
"extraKeywords": ["module","export","import"]

}

This is generally all that is needed in most situations, but if you like to get
fancy, there is extensive documentation about writing syntax extensions.
Et voilà, with our new language definition we can properly highlight our previous
example:

``` javascript5
// Javascript 5 modules
module Math {

export function sum(x, y) {
return x + y;

}
export var pi = 3.141593;

}
```

// Javascript 5 modules
module Math {

export function sum(x, y) {
return x + y;

}
export var pi = 3.141593;

}

As an aside, note that colorization is done statically by Madoko, and not dynam-
ically when a user views your document (and therefore, it works in LaTeX/PDF
too).

There are many built-in languages in Madoko, and you can look at their
JSON definitions. Here are a few: Java, Dafny, C#, Javascript, HTML, LaTeX,

www.todo.com
https://www.madoko.net/styles/lang/java.json
https://www.madoko.net/styles/lang/dafny.json
https://www.madoko.net/styles/lang/csharp.json
https://www.madoko.net/styles/lang/javascript.json
https://www.madoko.net/styles/lang/html.json
https://www.madoko.net/styles/lang/latex.json


36 Chapter 4. Syntax: Block elements

BibTeX, Madoko, Python, Ruby, SMT, Koka, C++(named cpp), etc. If you
write your own JSON description, you can simply include it yourself through
the Colorizer metadata key.

4.8.6. Advanced: taking over code blocks
It is possible to ‘take over’ code blocks and use them for example for mathemat-
ics. For example, here is how to make all code blocks use pre-formatted math
(Section 4.10.7):
pre,code {
input: mathpre;

}

Moreover, you can selectively only take over different kinds of code. Use .coden
for inline code with n quotes, and .pre-indented, pre-fenced, or pre-fencedn,
for indented or fenced code blocks (with n quotes). For example, here is how to
use a default language only for indented and double quoted (``) code:
.pre-indented,.code2 {
language: koka;

}

4.9. Tables
Madoko significantly extends the table syntax of basic Markdown. In particular,
it is easy to add horizontal or vertical lines, to control cell alignment, use multiple
column spans, colorize rows, etc. The basic rules for formatting a table are:

• Every line of the table should start and end with a | (or +) and columns
are separated by | (or +) too. If you need a | character in cell content,
use an escaped bar instead (\|).

• Every row can be on one line only, and there can be no blank lines.
• The table can optionally start with one or more header rows.
• A cell can span multiple columns by using multiple bars to end the cell,

like || in the previous example.
• The table should always have a column specifier row that separates the

header from the body of the table (or marks the start of the body in case
there is no header). The content of each cell in the separator is just dashes
(-) or tildes (~)

Here is an example of a plain table from ”Just a Theory”.

| id | name | description | price |
|:-----|:----------:|----------------------------|--------:|
| 1 | gizmo | Takes care of doohickies | 1.99 |
| 2 | doodad | Collects *gizmos* | 23.80 |

https://www.madoko.net/styles/lang/bibtex.json
https://www.madoko.net/styles/lang/madoko.json
https://www.madoko.net/styles/lang/python.json
https://www.madoko.net/styles/lang/ruby.json
https://www.madoko.net/styles/lang/smt.json
https://www.madoko.net/styles/lang/koka.json
https://www.madoko.net/styles/lang/cpp.json
http://www.justatheory.com/computers/markup/markdown-table-rfc.html


4.9. Tables 37

| 10 | dojigger | Foo | 102.98 |
| 1024 | Self-explanatory, no? || 0.99 |

id name description price
1 gizmo Takes care of doohickies 1.99
2 doodad Collects gizmos 23.80
10 dojigger Foo 102.98
1024 Self-explanatory, no? 0.99

The column specifier row is the second row in the previous example, and it
determines column alignment and vertical lines in a table:

• Columns can be aligned by using a : in a separator row column: one on
the right or left aligns to the right or left, while a colon on both sides will
center the column.

• If a column specifier uses a plus (+) instead of a bar (|) to separate the
column, a vertical line is used to separate the columns. To distinguish
the use of a + for a table instead of as a list item, there should be no
whitespace following a + when used this way!

• If a column specifier cell uses dashes -, a horizontal line is drawn. By
using tildes (~) instead, no line is drawn for that column specifier cell.

In the next example, we suppress the horizontal line after the header, but add
some vertical lines. Also, we use two header rows.

| grouped || | |
| id | name | description | price |
+:~~~~~|:~~~~~~~~~~:| ~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~:+
| 1 | gizmo | Takes care of doohickies | 1.99 |
| 2 | doodad | Collects *gizmos* | 23.80 |
| 10 | dojigger | Foo | 102.98 |
| 1024 | Self-explanatory, no? || 0.99 |

grouped
id name description price
1 gizmo Takes care of doohickies 1.99
2 doodad Collects gizmos 23.80
10 dojigger Foo 102.98
1024 Self-explanatory, no? 0.99



38 Chapter 4. Syntax: Block elements

Madoko.net: You can press Alt-Q to reformat tables (or paragraphs) and
align all columns. Also, pressing enter in a table will add a new row (use
ctrl-enter to use a regular line break if needed).

4.9.1. Horizontal rules
We can draw horizontal rules in a table by using a row where every cell just
contains dashes (-). By using equal signs (=) we get a double horizontal line.
Here is a a table with no header and an outer border:

+:----:|-------------+:--------------------------:|-------:+
| centered gizmos || Takes care of doohickies | 1.99 |
| 2 | doodad | Collects *gizmos* | 23.80 |
| 10 | dojigger | Escaped \| and \+ | 102.98 |
| 1024 | thingamabob | Self-explanatory, no? | 0.99 |
|------|-------------|----------------------------|--------|

centered gizmos Takes care of doohickies 1.99
2 doodad Collects gizmos 23.80
10 dojigger Escaped | and + 102.98
1024 thingamabob Self-explanatory, no? 0.99

And finally a complex table with all kinds of alignment, multiple column spans
and horizontal rules – imagine trying to draw this example table in HTML or
LaTeX without consulting the manual.

| ------ | ----------------- | ------------------- | ------ |
| id | name | description | price |
+--------+-------------------+:-------------------:+~~~~~~~:+
| 1 | gizmo |||
| | -----------------------------------------------|||
| 2 | doodad | Collect *gizmos* | 23.80 |
| ====== | ----------------- | =================== |--------|
| 1024 | thingamabob | Self-explanatory | 0.99 |
| ------ | ----------------- | | ------ |

id name description price
1 gizmo
2 doodad Collect gizmos 23.80
1024 thingamabob Self-explanatory 0.99

https://www.madoko.net


4.9. Tables 39

Note how we started the previous table with a horizontal line, where the column
specifier row is on the third line.

4.9.2. Long tables
If a table is expected to be long and cross multiple pages, the table should be
followed by an attribute declaration that sets the breakable attribute to true.
This is used in LaTeX output to switch to a longtable environment which
supports tables that can be broken over multiple pages.

4.9.3. The width of columns
We can specify the width (and other attributes) of a column by adding an at-
tribute specification in the column specification row. In the following example,
we use a column of fixed width, and one of a relative with with respect to the
overall width of the table.

+:----:|---{width:2cm}--+:-----{width:60%}--------:+-------:+
| centered gizmos || Take care of doo hickies | 1.99 |
| 2 | doodad | Collects *gizmos* | 23.80 |
| 10 | dojigger | Foo | 102.98 |
| 1024 | thingabob | Self-explanatory, no? | 0.99 |
|------|----------------|--------------------------|--------|

centered gizmos Take care of doo hickies 1.99
2 doodad Collects gizmos 23.80
10 dojigger Foo 102.98
1024 thingabob Self-explanatory, no? 0.99

4.9.4. Colors
Often we need to colorize certain rows or columns for clarity. Just like width
we can specify a background color for a column in the column specifier row.

Moreover, we can specify after the table more attributes that can style the
table further. In particular, any attribute can have the prefix tr- or col- to
apply to rows or columns respectively. Furthermore, tbody-tr- and thead-tr-
only apply to body or head rows. Moreover, you can follow the prefix with a
modifier, even-, odd-, last-, or n-, to apply only to even, odd, the last, or
the nth row or column. Finally, the prefixes th- and td- can be used for cell
elements in the header or body. The following example shows this in action:



40 Chapter 4. Syntax: Block elements

| ---- | -------------- | ------------------------ | ------ |
| id | name | description | price |
+:----:+--{background-color:Silver}--+:-----------:|-------:+
| centered gizmos || Take care of doo hickies | 1.99 |
| 2 | doodad | Collects *gizmos* | 23.80 |
| 10 | dojigger | Foo | 102.98 |
| 1024 | thingabob | Self-explanatory, no? | 0.99 |
|------|----------------|--------------------------|--------|
{ tbody-tr-odd-background-color:Gainsboro; \
tr-even-background-color:Floralwhite }

id name description price
centered gizmos Take care of doo hickies 1.99
2 doodad Collects gizmos 23.80
10 dojigger Foo 102.98
1024 thingabob Self-explanatory, no? 0.99

Colors are standard CSS colors and can be specified as described in Section 5.3.2.

4.9.5. Book tables
For producing high quality tables, there are some general guidelines that need
to be observed, in particular, it is considered good practice to:

1. Never use vertical rules in a table, and,
2. Never use double horizontal rules.

To make tables look good in this manner, we generally need rules of varying
thickness to distinguish the top rule, from the mid- and bottom rules in a
table. By using the .booktable class, the rule widths and rule separation is set
automatically. Here is an example from the Booktable package documentation:

An example of a 'book table':

| --------------- | ----------- | --------------- |
| Item || |
| \/------------- | ----------- | |
| Animal | Description | &ensp;Price ($) |
| :-------------- | ----------- | --------------: |
| Gnat | per gram | 13.65 |
| | each | 0.01 |
| Gnu | stuffed | 92.50 |
| Emu | stuffed | 33.33 |

http://mirror.hmc.edu/ctan/macros/latex/contrib/booktabs/booktabs.pdf


4.10. Mathematics 41

| Armadillo&ensp; | frozen | 8.99 |
| --------------- | ----------- | --------------- |
{ .booktable }

An example of a ‘book table’:
Item

Animal Description Price ($)
Gnat per gram 13.65

each 0.01
Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

Note how we used the empty escape sequence \/ in front of the second dashed
row in the header, or otherwise Madoko would interpret that row as the column
specification row. The .booktable class ensures more vertical space between
the rules, and a heavier top, mid-, and bottom rule. The exact styling is specified
using a (built-in) metadata rule which is shown in Appendix A.10.

4.10. Mathematics
Madoko documents can include mathematics in standard LaTeX syntax. Gener-
ally, inline math should be typeset between $ characters, while block equations
should use the Equation block syntax.

A famous equation is $E = mc^2$, but another famous one is:
~ Equation {#eq-gaussian; caption:"The Gaussian equation" }
\int_{-\infty}^\infty e^{-a x^2} d x = \sqrt{\frac{\pi}{a}}

~
and we can refer to Equation [#eq-gaussian] like any heading.

A famous equation is E = mc2, but another famous one is:∫ ∞

−∞
e−ax2

dx =

√
π

a
(2)

and we can refer to Equation (2) like any heading.

Block equations can also be included use the Math custom block which is just
like the standard LaTeX display environment (using $$ or \[). However, the
Equation block is preferred as it takes care of numbering, and alignment. See



42 Chapter 4. Syntax: Block elements

also Section 4.13 on custom blocks that support mathematics, like Theorem,
Lemma, Proof, etc. Madoko does not support the \(, \[, and $$ commands to
enclose mathematics since those are escape sequences in Madoko.

Sometimes inline equations between $ signs can get quite long. In Madoko
you can use newlines and put a long inline formula on multiple lines using LaTeX
comments to end the line:
A long $E = %continue on next line

mc^2$ formula.

4.10.1. Plain math and alignment
Equations are generally numbered but sometimes we just want to display a
mathematical equation without a number. The Math environment does just
that:

~ Math
P\left(A=2\;\middle|\frac{A^2}{B}>4\right)
~

P

(
A = 2

∣∣∣∣A2

B
> 4

)

Often, we also need to align formulas or display them on multiple lines. Instead
of using the LATEX environments align and gather, we should use the envi-
ronments aligned and gathered instead: the former are used in LATEX outside
math mode and the latter are used when we are already in math mode (which
is the case in Madoko). The aligned environment aligns formulas using an
ampersand &:

~ Equation { #eq-alignment; caption:"Alignment example" }
\begin{aligned}
f(x) &= a x^2+b x +c & g(x) &= d x^3 \\
f'(x) &= 2 a x +b & g'(x) &= 3 d x^2
\end{aligned}
~

f(x) = ax2 + bx+ c g(x) = dx3

f ′(x) = 2ax+ b g′(x) = 3dx2
(3)



4.10. Mathematics 43

Note that if you do this a lot, you can easily create our own Aligned custom
block using the following metadata rule:

Aligned { replace:"~Math&nl;\begin{aligned}&nl;&source;&nl;\end{aligned}&nl;~" }

In that case, you can write simply:

~ Aligned
f(x) &= (x+a)(x+b) \\
&= x^2 + (a+b)x + ab
~

f(x) = (x+ a)(x+ b)

= x2 + (a+ b)x+ ab

4.10.2. Using packages

By default, Madoko supports most of the AMS mathematics commands, i.e.
amsmath, amsfonts, and amssymb. However, sometimes you need specific pack-
ages. You can import more packages using the Package metadata key. For
example, we can include the amscd package,

Package: amscd

to draw commutative diagrams:

~ Equation { #eq-commuting; caption:"A commuting diagram" }
\begin{CD}
S^{{\mathcal{W}}_\Lambda}\otimes T @>j>> T\\
@VVV @VV{P}V\\
(S\otimes T)/I @= (Z \otimes T)/J
\end{CD}
~

SWΛ ⊗ T j−−−−→ Ty yP

(S ⊗ T )/I (Z ⊗ T )/J

(4)

http://www.ctan.org/pkg/amscd


44 Chapter 4. Syntax: Block elements

As a hint to understand the previous example, note that @VVV denotes a down-
ward arrow, @>j>> a right pointing arrow with a label j on top, and @= a long
equality.

Here is an example of the more modern xypic package which we included in
this document with the curve option:

Package: [curve]xypic

With this package, we can draw more complex diagrams.

~ Equation { #eq-cat; caption:"Category theory" }
\xymatrix @-0.5em{
U \ar@/_/[ddr]_y \ar@/^/[drr]^x
\ar@{.>}[dr]|-{(x,y)} \\
& X \times_Z Y \ar[d]^q \ar[r]_p
& X \ar[d]_f \\
& Y \ar[r]^g & Z }
~

U

y

!!

x

&&
(x,y)

$$
X ×Z Y

q
��

p
// X

f
��

Y
g // Z

(5)

As a hint to understand the above code, note that \ar@/_/[ddr]_y denotes
an arrow, left curved (@/_/), going down, down, right ([ddr]), with a label y
underneath. See the package user guide for more examples.
Madoko.net: You can by default include any package included in TexLive
(which are many). If you need to include a local package (or document class,
bibliography etc) you can either use the toolbox menu or just drag&drop it
into the editor.

4.10.3. Math commands
For math-heavy documents, it is convenient to define LaTeX commands for
common operations. Such command definitions can be directly understood by
LaTeX but need to be handled specially if the math is rendered dynamically in
a HTML page. Madoko defines the custom block MathDefs to support mathe-
matics definitions transparently across modes:

http://mirror.utexas.edu/ctan/macros/generic/diagrams/xypic/doc/xyguide.pdf
http://mirror.utexas.edu/ctan/macros/generic/diagrams/xypic/doc/xyguide.pdf
https://www.madoko.net
https://www.tug.org/texlive


4.10. Mathematics 45

~ MathDefs
\newcommand{\infer}[3]{#1 \vdash #2\,:#3}
~
We infer $\infer{\Gamma}{e}{\tau}$ for such expression $e$.

We infer Γ ⊢ e : τ for such expression e.

Often it is convenient to put all such definitions in a separate .tex file and
include it in the document as:
~ MathDefs
[INCLUDE="mathdefs.tex"]
~

4.10.4. Mathematics in HTML
To typeset mathematics in HTML, Madoko can either typeset the math stati-
cally or dynamically:

• static: In the default static mode, Madoko uses LaTeX to generate static
SVG (or PNG) images for each formula. This is generally preferred be-
cause pages load fast, and it requires no javascript. The drawback is that
you need to have LaTeX installed on your system (or use Madoko.net).
See the metadata section for more information on fine-tuning static math-
ematics.

• dynamic: Madoko uses the MathJax JavaScript library to render the math
on the client-side. This means you do not need LaTeX but it is generally
quite slow for math-heavy documents and not all of the LaTeX commands
and packages are available. This mode can be enabled in the metadata
as:

Math Mode: mathjax

The metadata section contains more information on customizing MathJax.

You can view and experiment with the different rendering modes in the online
mathematics rendering demo.

4.10.5. Advanced: Generic LaTeX snippets
Besides just mathematics, you can include arbitrary LaTeX snippets using the
custom Snippet block. This makes it possible to use powerful packages like TikZ
and PSTricks.

For the following example, we use PSTricks:

https://www.madoko.net
http://www.mathjax.org
http://research.microsoft.com/en-us/um/people/daan/madoko/samples/mathdemo/out/mathdemo.html
http://www.ctan.org/pkg/pgf
http://ctan.sharelatex.com/tex-archive/graphics/pstricks/base/doc/pstricks-doc.pdf


46 Chapter 4. Syntax: Block elements

Package: pstricks
Package: pst-plot

to typeset a the graph of the natural logarithm4:

~ Center {padding:1ex}
~~ Snippet
\psset{unit=2cm}
\begin{pspicture*}(-0.5,-1.5)(4,2)
\psgrid[subgriddiv=5,gridcolor=black!20%

,gridlabels=0pt](1,0)(3,1.2)
\psaxes{->}(0,0)(0,-1)(3.2,1.5)
\uput[0](3.2,0){$x$}\uput[90](0,1.5){$f(x)$}
\pscircle*[linecolor=red](! Euler 1){3pt}
\psline[linecolor=red,linestyle=dashed]%

(! Euler 0)(! Euler 1)
\psline[linecolor=red,linewidth=0.2pt,arrowscale=2]%

{->}(! Euler 1)(0, 1)
\uput[-90](! Euler 0){\color{red}$e$}
\pscircle*[linecolor=blue](1,0){3pt}
\psplot[linewidth=1pt]{0.2}{3}{ x ln }
\rput(1.6,-0.5){\color{blue}\fbox{$f(x)=\ln(x)$}}

\end{pspicture*}
~~
~

0

−1

1

1 2 3

x

f(x)

e

f(x) = ln(x)

4Example comes from the PSTricks example gallery.

http://tug.org/PSTricks/main.cgi?file=pst-plot/FunctionExamples%23paraplot


4.10. Mathematics 47

x y

z

f0

ϕ

f+

θ

f−

ψ

media 1

media 2

S1,2

Figure 3. TikZ example by Edgar Fuentes of reflection and refraction of elec-
tromagnetic waves.

The next two figures, Figure 3 and Figure 4 use the modern TikZ/Pgf package
which we included as:
Package : tikz
Tex Header : \usetikzlibrary{decorations.pathreplacing%

,decorations.pathmorphing}

Both examples come from the TikZ example gallery.
The pgfplots library is an extension of TikZ/Pgf to display plots:

Package: pgfplots

Drawing plots can be done either using math formulas or by giving direct data
points:

Using the `pgfplots` package we can draw nice plots:
~ Snippet
\begin{tikzpicture}
\begin{axis}[

height=8cm,
width=8cm,
grid=major,

]
% math plot
\addplot {-x^5 - 242};

http://www.texample.net/tikz/examples/oblique-incidence
http://www.ctan.org/pkg/pgf
http://www.texample.net/tikz/examples/


48 Chapter 4. Syntax: Block elements

n

n
2

n
22

...

n
2k

n
2k

...

n
22

...
...

n
2

n
22

...
...

n
22

...
...

n
2k

n
2k = Ok=lg n(n)

...

O2(n)

O1(n)

O0(n)

O(n · lgn)

+

+ ++

+ +· · ·

O

(
k∑

i=0

2i · n
2i

)
+

+

+
=

+

=

=

⇓

O

(
k∑

i=0

n

)
= O(k · n)

=
+ +

= ⇔

· · ·

Figure 4. TikZ example by Manuel Kirsch of a merge sort recursion tree.

\addlegendentry{model}
% data plot
\addplot coordinates {
(-4.77778,2027.60977)
(-3.55556,347.84069)
(-2.33333,22.58953)
(-1.11111,-493.50066)
(0.11111,46.66082)
(1.33333,-205.56286)
(2.55556,-341.40638)
(3.77778,-1169.24780)
(5.00000,-3269.56775)
};
\addlegendentry{estimate}
\end{axis}
\end{tikzpicture}
~

Using the pgfplots package we can draw nice plots:

http://www.texample.net/tikz/examples/merge-sort-recursion-tree


4.10. Mathematics 49

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 1 2 3

10

20

30

40

160

Figure 5. Bar chart examples by Matt B. and Jake using pgfplots.

−6 −4 −2 0 2 4 6

−3,000

−2,000

−1,000

0

1,000

2,000

3,000 model
estimate

The final examples in Figure 5 also use the pgfplotstable library:

Package: pgfplotstable

to display bar charts.

http://stackoverflow.com/questions/4902147/latex-bar-chart
http://tex.stackexchange.com/questions/99832/how-to-draw-bar-chart-using-tikz


50 Chapter 4. Syntax: Block elements

4.10.6. Advanced: Efficiency of math rendering
Madoko is quite optimized to render mathematics efficiently, especially for math
heavy documents which can easily contain thousands of small mathematics frag-
ments. Madoko carefully processes only those fragments that need recompila-
tion. If needed you can give the -r flag to rebuild everything from scratch (or
say Rebuild: True in the metadata).

Usually, Madoko uses xelatex to generate a dvi (.dvx) file, and then uses
dvisvgm to extract a scalable vector graphics (SVG) image, automatically taking
care of proper baseline alignment. There are some cases where dvisvgm fails to
extract a proper image – mostly for snippets that combine postscript and TikZ
output drivers in LATEX; If you have trouble first try to update Madoko to the
latest version and also the dvsisvgm program.

In many cases it can work to render snippets through pdflatex using the
following metadata key (which was used for this document):
Math Latex Full: pdflatex

Sometimes snippets contain fragments that take a long time to process, in partic-
ular for certain TikZ programs. Madoko therefore has two independent modes,
plain and full. By default Madoko uses for all regular mathematics the plain
mode, and for snippet’s it uses full mode. This makes the preview more re-
sponsive when editing plain mathematics.

Certain snippets cannot work with plain dvi at all and need to be extracted
as PNG files from a PDF file. In such cases, Madoko will use ImageMagick’s
Convert program to extract images. However, this is not done by default since
this method is both much slower than extracting from a dvi file, and PNG
images.

4.10.7. Advanced: Preformatted math
LaTeX math mode is great for regular mathematics but not so good if one tries
to preserve whitespace or uses longer identifiers. This is actually quite common
for computer science documents where mathematics is mixed with program
code. Madoko supports a MathPre custom block that makes preformatted math
much easier to typeset. In particular:

• Whitespace is preserved and spaces are replaced with a medium space
(\mathspace) command (except when the spaces directly follow a LaTeX
command). Indentation is done through a \mathindent command, while
line breaks are automatic with a \mathbr command.

• A name (consisting of letters and digits) is typeset in a \mathid command
so it will look like function instead of function (note the spacing between
the f and u for example).

• If a name ends with digits, they are typeset as subscripts, where x1 be-
comes x1.

http://www.imagemagick.org/script/binary-releases.php
http://www.imagemagick.org/script/binary-releases.php


4.10. Mathematics 51

• A name starting with an @ character is typeset using a \mathkw command,
where @return becomes return.

• Any text that is an argument of a \begin, \end, \textxx or \mathxx
command, where xx is one of tt, sf, sl, rm, it, kw, id, bb, or bf, is kept
unchanged. Also any name starting with a # character is kept unchanged.

• Ampersands can be used to align text.

Using this convention, we can easily typeset program code using nice symbols.

~ MathPre
@function sqr_\pi( num :int ) \{

@return (num {\times} num \times{} \pi)
\}
~

function sqrπ( num : int ) {
return (num× num × π)
}

Here is an example of aligned text which also demonstrates the use of replace
(see Section 5.6):

~ MathPre { replace: "/->/\rightarrow/g" }
random &: () -> ndet double;
print &: string -> io ();
error &: \forall\langle\alpha\rangle\ string -> exn \alpha;
~

random : () → ndet double;
print : string → io ();
error : ∀⟨α⟩ string → exn α;

Of course, you can often achieve a similar effect by using good replacers with
.pretty code directly (Section 4.8.3):



``` koka { .pretty; \
replace: "//->/\(->|&rarr;\)//</\(<|&lang;\)//>/\(>|&rang;\)//g"; \
replace:"//\bforall\b/\(forall|&forall;\)//\balpha\b/\(alpha|&alpha;\)//g"; }

random : () -> ndet double;
print : string -> io ();
error : forall<alpha> string -> exn alpha;
```

random : () → ndet double;
print : string → io ();
error : ∀⟨α⟩ string → exn α;

4.10.8. Setting all code to preformatted math
If you want to typeset all math using preformatted math, you can actually ‘take
over’ the standard math blocks in Madoko and set the input of those to mathpre.
For example:
.math-inline,.math-display {
input: mathpre;

}

These set both display- and inline-math to the mathpre input mode.

4.11. Table of contents
Generating a table of contents is easy, just include the special element [TOC]
anywhere in your document and it will expand to a table of contents. You an
use the metadata value Toc Depth to set how many levels deep the table of
contents goes (by default 3).

You can also a create a list of figures or tables by using [TOC=figures]
or [TOC=tables] respectively. This will list all the ~Figure or ~TableFigure
block elements.

[TOC=figures]



4.11. Table of contents 53

Figures

1. A Monarch butterfly. 22
2. Examples of sub figures. 24

(a) A butterfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
(b) A matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
(c) A textual subfigure . . . . . . . . . . . . . . . . . . . . . . . . 24

3. TikZ example by Edgar Fuentes of reflection and refrac-
tion of electromagnetic waves. 47

4. TikZ example by Manuel Kirsch of a merge sort recursion
tree. 48

5. Bar chart examples by Matt B. and Jake using pgfplots. 49
6. The basic CSS colors 80
7. A formula ??

A [TOC] element comes with a heading by default, namely Contents, Figures,
and Tables. The names can be customized using the metadata entities (§ 5.2)
name-contents, name-figures, and name-tables.

4.11.1. Advanced: Custom tables of contents
Custom tables of contents can be generated using the toc attribute. The
toc-depth attribute specifies the depth of the element (by default 1), while
the toc-line specifies the contents of the line displayed in the table of con-
tents. For example, using metadata rules we can generate a table of contents
for equations:

equation {
toc: equations;
toc-line: "&label;&ensp;&caption;";

}

Here we assume that the user adds a caption attribute when denoting equations
(which will get expanded inside the toc-line). We can then render the table
of equations anywhere in the document as:



54 Chapter 4. Syntax: Block elements

## Equations { -; toc:clear; }
[TOC=equations]
\/

Equations

(1) Euler’s formula 21
(2) The Gaussian equation 41
(3) Alignment example 42
(4) A commuting diagram 43
(5) Category theory 44
(6) A chemical equation 100

4.12. Bibliography and Citations
One of Madoko’s main design goals is to enable the creation of high-quality
scholarly articles. As such, Madoko integrates closely with BibTeX and Cita-
tion Style Language (CSL) styles to generate bibliographies and references in a
document.
You can simply use any existing BibTeX bibliography file (.bib) to describe all
your references. You can specify which bibliography files are to be used using
Bib (or Bibliography) metadata entries:

Bib: ../mybib1
Bib: mybib2

Madoko.net: You can simply drag&drop any local .bib file into the editor to
include it in the document.
A bibliography file consists of all your references in the BibTeX format, for
example:

@BOOK{ Knuth:TeX,
author = "Knuth, Donald E.",
title = "The {\TeX} book",
publisher= "Addison-Wesley",
year = 1984

}

You can view the bibliography file for this document here. There is also a
nice table at Wikipedia that shows all possible document types and field types.

Entries in the bibliography files can now be referenced using semi-colon sep-

http://en.wikipedia.org/wiki/BibTeX
http://citationstyles.org/
http://citationstyles.org/
https://www.madoko.net
reference.bib
https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management%23BibTeX


arated references, for example

Read about LaTeX and TeX [@Knuth:TeX; @Lamport:LaTeX].

Read about LaTeX and TeX [4, 5].

Note that unlike LaTeX there is no need to explicitly insert an unbreakable
space between the text and the citation, Madoko automatically takes care of
this (as described in Section 4.2). If necessary, you can also include extra text
for each entry:

Read more [The book @Knuth:TeX;\ @Lamport:LaTeX (chapter 4)].

Read more [The book 4, 5 (chapter 4)].

When Madoko finds such references, it writes them to a .bib.aux file (together
with the needed bibliography files) and processes them to generate a bibliogra-
phy. The generated bibliography entries are included in your document using
the special [BIB] element.
[BIB]



56 Chapter 4. Syntax: Block elements

References

[1] J. Fagerberg, D.C. Mowery, and R.R. Nelson, editors. Oxford Handbook
of Innovation. Volume 1. Oxford University Press, Oxford. 2004.

[2] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX
Companion. Addison-Wesley, Reading, Massachusetts. 1993.

[3] O. Grandstrand. “Innovation and Intellectual Property Rights,”
in Fagerberg et al. [1], volume 1, chapter 10. 2004.

[4] Donald E. Knuth. The TEX Book. Addison-Wesley. 1984.

[5] Leslie Lamport. LATEX: A Document Preparation System (2nd Edition).
Addison-Wesley. 1994. See also [4].

Note that a [BIB] element comes with a standard heading with the name Ref-
erences. You can customize this by setting the name-references entity.

4.12.1. Bibliography styles
The style of the bibliography entries is determined by a bibliography style.
Madoko can use both standard BibTeX styles (.bst) and standard Citation
Language Style styles (.csl). An advantage of using CSL styles is that there
are thousands available online and that they are processed internally in Madoko
without needing to run BibTEX.

CSL styles are included with the Csl Style key:
Csl Style: Taylor-and-Francis-Chicago-Author-Date

When using Madoko on the command line, you need to put the taylor-and-francis-chicago-author-date.csl
file in the document directory so it can be found by Madoko. There are three
styles that come standard with Madoko. These styles handle cross references
nicely and also handle DOI and URL fields well. The standard styles are:

• madoko-numeric: The default style which is a numeric style that closely
follows the plainnat style if BibTEX

• madoko-numeric-short: Similar to the previous style but follows abbrvnat
with initialized authors and abbreviated terms.

• madoko-natural: Similar to the numeric style but for author-date style
citations.

http://web.reed.edu/cis/help/latex/bibtexstyles.html
http://citationstyles.org/
http://citationstyles.org/
https://www.zotero.org/styles


4.12. Bibliography and Citations 57

Madoko.net: If the CSL style is given without extension or directory, the style
is looked up automatically from the CSL style repository and downloaded from
there. You can also drag&drop a .csl file in the editor pane to include it in
the document.

When a CSL style is read, the citation style is automatically adjusted to reflect
the CSL style, e.g. natural citations for author-date styles, or numeric citations
for a numeric style.

Even with a CSL style, Madoko still expects the bibliography as a BibTeX
.bib file – this is mostly because .bib files are so convenient to write and
maintain and Madoko fully supports modern extensions like the eprinttype or
eprint fields. However, if needed, one can also supply a .json file with CSL
bibliography entries instead of a .bib file (by default, Madoko will actually
generate such CSL bibliography from a .bib file in the output directory).

Instead of a CSL style, Madoko can also use any standard BibTeX style:

Bib Style: plainnat

Madoko uses an internal LaTeX parser to format the bibliography entries in
Markdown. It can handle things like special characters and accents quite well
and recognizes many formatting commands. Even though it is sufficient for
bibliography entries in general, the Madoko LaTeX parser may not work for
more fancy LaTeX commands in bibliography entries. However, we strive to
make it work for any bibliography style and entries, so please file a bug report
if you encounter situations where it does not work correctly.

BibTeX bibliography styles tested with Madoko include the following author-
year styles: apa, apalike, plainnat, abbrvnat, unsrtnat, newapa, chicago,
named, agsm, dcu, kluwer, astron, bbs, cbe, humannat, humanbio, jtb, apsrev4-1,
aipauth4-1 and others. Also, the following numeric styles have been tested:
eptcs, abbrv, plain, ieeetr, acm, unsrt, alpha, siam, apsrmp4-1, aipnum4-1
and others. Since tools like BibTeX and Madoko make numbering and link-
ing automatic, it is generally preferred for modern documents to use a numeric
citations style.

4.12.2. Citation styles

The citation style determines how citations are shown in the document. It
defaults to a numeric style, or the style set by a CSL style, but can be set
explicitly using the Cite Style metadata key:

Cite Style: natural

Valid citation styles are natural, sqnatural, textual, super, and numeric (default).
The natural and textual style use author-year style citations, while the super
and numeric styles use numbers.

https://www.madoko.net
https://github.com/citation-style-language/styles
http://web.reed.edu/cis/help/latex/bibtexstyles.html
http://madoko.codeplex.com/workitem/list/basic


58 Chapter 4. Syntax: Block elements

natural (Lamport, 1994; Knuth, 1984) (default for author-year citations)
sqnatural [Lamport, 1994; Knuth, 1984]
textual Lamport (1994); Knuth (1984)
numeric [4, 5] (default for numeric citations)
super 4,5

Note that numeric citations are sorted (and compressed) by default. Also full
author-year style citations only work with CSL styles, and with BibTeX styles
that support this, i.e. generally any style that works with the natbib package
like plainnat. With author-year citations we can use modifiers to change how
the citation is shown. For example, assuming a natural style:
[@Goo93] (Goossens et al., 1993) Natural
[+@Goo93] (Goossens, Mittelbach, and Samarin, 1993) Long – all authors
[-@Goo93] (1993) Short – just year
Moreover, if you leave out the brackets, you force a textual style:
@Goo93 Goossens et al. (1993) Textual style
+@Goo93 Goossens, Mittelbach, and Samarin (1993) Long – all authors
-@Goo93 1993 Short – just year
!@Goo93 Goossens et al. Just authors
In a numeric style, most of these attributes have no effect and all the bracketed
cases are displayed as ”[2]“. For the four cases in textual style, we get ”Goossens
et al. [2]“, ”Goossens, Mittelbach, and Samarin [2]“, ”2“, and ”Goossens et al.”.

See Appendix A.3 on how to customize citations styles further, and Ap-
pendix A.4 on how to write your bibliography entries by hand without using a
[BIB] element.

4.12.3. Bibliography tooltips and searches
By default, the HTML backend shows a tooltip when hovering over a citation
(try it [2]). This functionality is by default disabled in the LaTeX backend.
However, you can enable tooltips in PDF too by setting the .tex-tooltip
class through a metadata rule:

~a: .tex-tooltip

This will display a small yellow text balloon in the PDF file that shows a tooltip
when hovering above it:

.
Moreover, Madoko adds to each bibliography entry a magnifying glass icon (X ◦
) that links to a web search for that reference. You can customize the search
engine that is used by setting the Bib Search Url metadata key:

Bib Search Url: www.google.com

http://www.google.com/search?q=Goossens+Mittelbach+Samarin+Latex+Companion


4.13. Custom blocks 59

If you set the Bib Search Url to false (or empty), Madoko will disable search
icons. Again, this functionality is disabled by default in the LaTeX backend
unless you set the Bib Search Url key explicitly

4.13. Custom blocks
Madoko custom blocks are similar to the div element in HTML and allow the
use of custom block elements that can be styled and processed in a particular
way. A custom block starts on new line starting with one or more tildes (~)
optionally followed by the block name and attributes. It ends at the first line
containing the same number of tildes that started this block.

~ Note
Here is a note.
~
~~ { font-style: italic }
And some italic text in an unnamed block.
~~

Note. Here is a note.
And some italic text in an unnamed block.

Note that blocks with the same number of tildes do not nest, e.g. the following
is wrong:

~ Note
~ Equation
e = mc^2
~
~

since the Note will end at the first lonely tilde, not the second one. As an
aside, git flavored markdown uses three or more tildes for fenced code blocks.
Since Madoko uses tildes for custom code blocks this cannot be used and Madoko
only supports the more popular back-ticks (```) for fenced code blocks.
Custom blocks work especially well with metadata rules (see Section 5.4) where
we can define attributes that get applied to every occurrence of a custom block.
For example, we could define the metadata rule:

slanted {
font-style: oblique;

}

and then every occurrence of a Slanted custom block would be typeset in a
slanted font.

https://help.github.com/articles/github-flavored-markdown


60 References

~ Slanted
Here is my slanted custom block
~

Here is my slanted custom block

The “number-of-tildes” rule to delimit custom blocks is convenient and works
fine when nesting a small number of custom blocks, but for long blocks or deep
nesting, this can easily lead to confusion. To alleviate this, a custom block
can also start with one or more tildes, followed by Begin blockname. Such
block continues until a corresponding number of tildes is found followed by End
blockname. It is recommended to use this form of blocks for example in metadata
rules

~ Begin Slanted

~ Begin Note
Here is a slanted note.

~ End Note
~ End Slanted

Note. Here is a slanted note.

4.13.1. Predefined custom blocks
Madoko defines quite a few common custom blocks. Their exact definitions can
be found in Appendix A.10.

• Figure: This is used to define figures (see Section 4.3). Recognizes the
following attributes:

– caption: caption: specify the caption of a figure.
– .wide: if the class wide is set, the figure will span the width of a

page in a two-column format (used in LaTeX).
– page-align: (top|bottom|topbottom|page|here|forcehere|inplace):

specify the alignment of the figure in a page (used for LaTeX output).
forcehere corresponds to the h! specifier in LaTeX, while inplace
uses H. If you need even more customization, you can set the specifier
in LaTeX explicitly using the tex-float-placement attribute.

• Equation: Specify mathematical equations. See Section 4.10 for its usage.



4.13. Custom blocks 61

• Snippet: Generic LaTeX snippets, see Section 4.10.5.

• Bibitem, Bibliography: Used for writing bibliography entries by hand.
See Section 4.12 for more information.

• Note, Remark, Proof: Used for notes, remarks, and proofs.

• Abstract: Defines the abstract of an article.

• Framed: A block with a solid border. Use the tight attribute to suppress
a paragraph block around its content.

• Center: A block that centers its contents horizontally on the page.

• Columns, Column: Put Column blocks inside a Columns block, to typeset
block elements next to each other on a page. Use the width attribute to
control the width of each column.

• TexRaw: A block for raw TeX content that is passed directly to LaTeX.

• Section: Starts an explicit section. In the HTML5 backend expands
to a <section> element. This is mainly used inside presentations using
reveal.js.

• Article, Aside, Nav: Expand to the corresponding HTML5 elements.

• HtmlRaw: A block with raw HTML content that is pasted directly into
the HTML output. This is normally not needed since you can just start
including HTML elements directly as part of markdown input.

• TexOnly: A markdown block that is only processed for LaTeX output
(and not shown in HTML output).

• HtmlOnly: A markdown block that is only processed for Html output (and
not shown in LaTeX output).

• MathPre: A block with preformatted math (Section 4.10.7).

• MathDefs: A block with LaTeX math definitions (Section 4.10.3).

• Theorem, Lemma, Proposition, Corollary, Example, Definition: Each
of these blocks is individually numbered and starts with the block name
in bold. All of these can take a caption attribute. For example:

~ Lemma {#LeftCosetsDisjoint; caption: "Left co-sets are disjoint"; }
Let $H$ be a subgroup of a group $G$, and let $x$ and
$y$ be elements of $G$. Suppose that $xH \cap yH$ is
non-empty. Then $xH = yH$.
~



62 References

~ Proof { caption: "Of Lemma [#leftcosetsdisjoint]" }
Let $z$ be some element of $xH \cap yH$. Then $z = xa$
for some $a \in H$, and $z = yb$ for some $b \in H$.
If $h$ is any element of $H$ then $ah \in H$ and
$a^{-1}h \in H$, since $H$ is a subgroup of $G$.
But $zh = x(ah)$ and $xh = z(a^{-1}h)$ for all
$h \in H$.
Therefore $zH \subset xH$ and $xH \subset zH$, and thus
$xH = zH$. Similarly $yH = zH$, and thus $xH = yH$,
as required. &qed;
~

Lemma 1. (Left co-sets are disjoint)
Let H be a subgroup of a group G, and let x and y be elements of
G. Suppose that xH ∩ yH is non-empty. Then xH = yH.

Proof. (Of Lemma 1) Let z be some element of xH ∩ yH. Then
z = xa for some a ∈ H, and z = yb for some b ∈ H. If h is any
element of H then ah ∈ H and a−1h ∈ H, since H is a subgroup
of G. But zh = x(ah) and xh = z(a−1h) for all h ∈ H. Therefore
zH ⊂ xH and xH ⊂ zH, and thus xH = zH. Similarly yH = zH,
and thus xH = yH, as required. □

Of course, each of the predefined blocks can be customized further using
attributes and rules. For example, by including the following metadata
rule, we can typeset proofs with Proof in an italic style instead of bold:

Proof {
before: "[_Proof_. ]{.proof-before}"
}

4.14. Special block elements
Madoko supports some special block elements that get expanded automatically.

• [TITLE]: Expands to a title element generated from the metadata keys
title, subtitle, title date and author info (author, affiliation, and email). In
the LaTeX backend this will invoke the \maketitle command.

• [TOC], [TOC=name]: Expands to a table of contents. See also Section 4.11.



4.14. Special block elements 63

• [FOOTNOTES]: Expands to the defined footnotes. If there are footnotes
and this element is not present, the footnotes are automatically included
at the end of the document. In the LaTeX backend, footnotes always
appear at page footers.

• [INCLUDE=file]: Expands to the contents of file. Include elements are
processed before any other processing happens and can for example be
used to include meta data elements.

[INCLUDE="presentation"]

Include files are first searched relative to the current directory, then the
directory of the input file, followed by the output directory, and finally
the styles directory in the installation directory of Madoko. The default
file extension is .mdk.
The INCLUDE element can also be used to include parts of a file, see Sec-
tion 4.14.1 for more information.

• [BIB]: Includes the bibliography entry file (.bbl) generated by BibTex.
Internally expands to:

~ Begin TeX
[INCLUDE="myfile.bbl"]
~ End TeX

See also Section 4.12.

4.14.1. Advanced: including file fragments
The full syntax of the INCLUDE element is:

[INCLUDE(=file)?(:range)?]
where the range is either a fragment name or line range. For example we

can include part of file by using:
[INCLUDE=foo.hs:10-18]

or
[INCLUDE=foo.hs:20]

which would include lines 10 to 18, and all lines starting at line 20 from foo.hs.
Of course remembering line ranges can be error prone, so we can also give names
to fragments of files and use those to refer to them. For example, we may have
code samples in foo.hs as:
-- BEGIN:Var
-- BEGIN:Syntax
data Exp = Number Int

| Add Exp Exp
| Subtract Exp Exp



64 References

| Multiply Exp Exp
| Divide Exp Exp

-- END:Syntax
| Variable String;

-- END:Var

--BEGIN:Eval
evaluate :: Exp -> Int
evaluate (Number i) = i
evaluate (Add a b) = evaluate a + evaluate b
evaluate (Subtract a b) = evaluate a - evaluate b
evaluate (Multiply a b) = evaluate a * evaluate b
evaluate (Divide a b) = evaluate a `div` evaluate b
--END:Eval

Where the BEGIN name and END name delimit file fragments. Note that the
fragments can be nested and/or overlapping. If a fragment is not ended, it
will run until the end of the file. When fragments are included, and fragment
begin/end lines are replaced by empty lines. We can now include particular
fragments as:
[INCLUDE=foo.hs:Var]
[INCLUDE=foo.hs:Eval]

for example. Sometimes, it can be a hassle to always mention the full file name.
In that case, we can first do a few empty includes of all the needed files (so
Madoko knows the fragment names), and then just use the fragment names
directly, e.g. first an empty include at the start of the document by using line
number 0:
[INCLUDE=foo.hs:0]

and later in the document, we can refer to fragments in that file using:
[INCLUDE:Syntax]

The delimiters for fragments are always ’start (BEGIN|END) name’ where start
includes most of the usual comment characters, namely, //, --, <!--, (*, #,
and %. If you need some other sequence, you can customize this using the
Fragment Start and Fragment End metadata keys. For example, the default
is set as:
Fragment Start: ^(?:\/\/|--|[#%]|[<]!--|\(\*) *BEGIN *: *(\w+) *(?:--[>]|\*\))?$
Fragment End : ^(?:\/\/|--|[#%]|[<]!--|\(\*) *END *\

(?:[:] *(\w+) *)?(?:--[>]|\*\))?$



Chapter 5

Syntax: Metadata and
Styling

5.1. Metadata
Similar to multimarkdown, a document can begin with a special metadata sec-
tion that contains meta information like the document title, the author, etc.
Moreover, this section can contain attribute rules to globally apply attributes
to certain elements, much like CSS rules.

Metadata must come immediately as the first thing in a document, and
consists of keys followed by a colon and then the key value. A key value can
span multiple lines by indenting, and you can leave blank lines between different
keys.
Title : An overview of Madoko
Author : Daan Leijen
Affiliation : Microsoft Research
Email : daan@microsoft.com
Logo : False
Embed : False

In general, metadata keys are not case-sensitive. The values none, clear, false,
and the empty value are all equivalent for boolean or numeric keys.

5.1.1. Special metadata keys
Any metadata key and value can be given (and referred to using entity names),
but certain keys have special meaning to Madoko.

• Title: The title of the document. For example, in HTML output it
determines the <title> element. It is also used by the special [TITLE]
element (Section 4.14).

http://fletcherpenney.net/multimarkdown


66 Chapter 5. Syntax: Metadata and Styling

• Subtitle: An optional subtitle.

• Title Note: A general note about the document. Used in the [TITLE]
element where it is put below the title and authors.

Title Note: Draft, &date; (version 1.0)

• Title Footer: A general footer that is placed below the title and authors.

• Author, Address, Affiliation, Email, Author Note: the author name,
address, affiliation, email, and general note. There can be multiple au-
thors. The author info is also used by the [TITLE] element to generate
a proper document title header. The authors are also written to the au-
thor <meta> tag. In the case of multiple authors, the address, affiliation,
author note, and email always belong to the last defined author. If you
define multiple Address or Affiliation entries for one author, they are
placed above each other.

• Title Running, Authors Running: Used for certain LaTeX styles as the
running title and authors displayed at the top of each page. By default
the full title and list of authors are used.

• Author Columns (=3): The number of columns used for the authors. Only
relevant if there are more than 3 authors used.

• Toc depth (=3): The maximum depth of headings that are included in
the table of contents (Section 4.11).

• Heading depth (=3): The maximum depth of headings that are numbered
(Section 5.5). Set it to zero to suppress numbering of headings completely.

• Heading base (=2): Usually, a top heading (# heading) maps to a <h2>
or \section element in HTML and LaTeX respectively. By changing the
Heading Base you can change this mapping. For example, by using:

Heading Base: 1

the top headings will map to <h1> or \chapter elements instead.

• Section Depth (=0): Maximal heading level where <section> elements
are wrapped around the content. The default value ensures no section
wrapping takes place.

• Section Base (=1): All headings at Section Base and lower are treated
as equal for the purpose of wrapping <section> elements around the
content. This is especially useful for presentations where we would like to
start slides equally for headings at level 1 and 2 (see Appendix A.2).

• Bib or Bibliography: Specify a bibliography (.bib) file to be used by
the BibTeX tool to generate a list of references (see Section 4.12).

Bib: ../mybibliography.bib



5.1. Metadata 67

• Bib Style or Biblio Style (=plain): Specify a BibTeX style that is used
to format the list of references. See Section 4.12.1 for more information.

Bib Style: plainnat

Madoko.net: When leaving out the extension, Madoko assumes this
is a standard bibliography style (available from CTAN). If an extension
(.bst) is given, the file is loaded (or created) from the current directory.

• Csl Style: Specify a Citations Language Style (CSL) that is used to
format references. This takes precedence over a Bib Style since CSL
styles are generally more up-to-date and often have better localization.

Csl Style: ieee

Madoko.net: When leaving out the extension and directory, Madoko
assumes this is a standard bibliography style and will automatically
download it from the CSL style repository.
Also, CSL styles will be handled completely client-side without the need
for a server roundtrip.

• Locale (=english): Specify the document locale, either by the language
name (german), or as language identifier (like en-US or fr-CA). Currently
not used by Madoko but it is used when generating bibliographies using
a CSL style for that locale.

• Cite Style (=numeric): Specify the citation style used for citations, nat-
ural, _textual, super, or numeric. See Section 4.12.2 for more information.

• Cite All (=false): Set to True to cite everything in the included bibliog-
raphy files.

• BibTex (=bibtex): The command to run the BibTeX tool. Set it to false
to suppress running BibTeX (for example, where writing bibliography en-
tries by hand (see Section A.4))

• Pdf Latex (=xelatex): The command used to generate a PDF when the
--pdf command line flag is present.

• Latex (=latex): The command used to generate a DVI when necessary
(e.g. when generating plain math with PNG images)

• Fragment Start, Fragment End: Used to specify file fragment delimiters,
see Section 4.14.1.

• Logo (=True): Set to False to suppress the “Document generated by
Madoko.net” message at the end of the document.

• Prelude (=prelude): Specify the standard prelude style that is always
included.

https://www.madoko.net
https://www.madoko.net
https://github.com/citation-style-language/styles


68 Chapter 5. Syntax: Metadata and Styling

• Refer: Make explicit that a certain file or image is referenced by this
document.
Madoko.net: This is useful in the online editor if the inclusion of the file
is not apparent to Madoko. This can happen for example in LaTeX class
files that reference images, or image references inside HTML attributes.

• Line No (=1): Specify the starting line number used for errors and warn-
ings. Usually, the generated HTML and LaTeX will contain these line
numbers to track back errors to the original sources. Set line-no to
False to suppress line number generation.

• Pretty Align (=2): The number of spaces needed to align code in .pretty
mode.

The following keys are not used as this moment but have a standard meaning:

• Copyright: Copyright information. Written to the copyright <meta> tag.
• License: License for this document. Written to the license <meta> tag.
• Keywords: A list of document keywords. Written to the keywords <meta>

tag.
• Description: A short description of the document. Written to the de-

scription <meta> tag.
• Comment: General comments.
• Revision: Revision of the document.
• Phone: Phone number of an author.

5.1.2. HTML keys
Some keys are only interpreted for HTML output:

• Css: Specify a CSS file that needs to be included in HTML output. There
can be many CSS keys present.

Css: lib/main.css
Css: http://foo.com/bar.css
Css: http://fonts.googleapis.com/css?family=Open+Sans

Use Css: clear to clear the list of CSS files. This can be used for example
to not include the default madoko.css style file.

Madoko.net: When not giving an extension or full path, Madoko will
try to load the css file from the Madoko server’s /style directory. This
is used for the standard madoko.css file.

• Script: Specify a Javascript file that needs to be included in the HTML
output via a <script> tag. There can be many script keys present.

Script: lib/main.js

https://www.madoko.net
https://www.madoko.net


5.1. Metadata 69

Madoko.net: Usually, scripts are not loaded in the preview as this may
lead to performance problems. You can use the preview class to signify
that the script should be loaded in the preview too:

Script: reveal.js {.preview}

• Embed (=512): The file size limit in kilobytes up to which local data is
directly embedded into the HTML, this includes CSS style files, Javascript
files, and images. Set it to 0 to never embed anything, and high enough
to always embed.

• HTML Meta: Specify content included in a <meta> tag. There can be many
meta tags specified.

HTML Meta: http-equiv="refresh" content="30"

Use the value clear to clear the list of meta tags. This can be used for
example to exclude the default viewport meta tag that is emitted for
proper viewing on mobile devices.

• HTML Header: The value is included literally in the <head> section of the
HTML document.

• HTML Footer: The value is included literally at the end of the HTML
document.

• CSS Header: The value is included literally in a <style> element in the
<head> section of the HTML document.

• JS Header: Literal Javascript that is included in a <script> element in
the <head> section of the HTML document.

• JS Footer: Literal Javascript that is included in a <script> element at
end of the HTML document.

• Math Mode: static|mathjax|dynamic (=static): The mathematics ren-
dering mode is either static or dynamic. You can set the Math Mode
to mathjax to set the mode to dynamic and Mathjax to True. In static
mode, you can use the following keys to fine-tune the rendering:

– Math Dir: dir (=math): The directory relative to the output direc-
tory where Madoko stores the images for the math formulas. All math
images can also be embedded in the web page if you set Math Embed
high enough.

– Math Embed:size (=512): Limit in kilobytes at which images are
embedded in the HTML page instead of separate .svg (or .png)
images. Set it to 0 to never embed an image, and high enough to
always embed.

https://www.madoko.net


70 Chapter 5. Syntax: Metadata and Styling

– Math Scale: scale: Scaling in percentage used for all math. The de-
fault looks quite good for most fonts, but you may want to change it
depending on the main font used. The default used is &Math Scale Svg;
(105) for SVG math images, and &Math Scale Png (108) for PNG
images.

– Math Latex: cmd: The command used to invoke LaTeX when ren-
dering plain math. When extracting SVG it defaults to &Pdf Latex;
and when extracting PNG to &Latex;.

– Math Latex Full: cmd: The command used to invoke LaTeX when
rendering math that requires a PDF; defaults to &Pdf Latex;.

– Math Render, Math Render Full: svg|png (=svg): Determines whether
to generate scalable vector graphics (svg) for mathematics or hi-
resolution bitmaps (png). The SVG images look much better in gen-
eral and scale automatically to any size.
When generating a SVG the following options are available:

∗ Math Scale Svg: scale (=105): Scaling in percentage used for
math extract to a SVG images. The default looks quite good
for most fonts, but you may want to change it depending on the
main font used.

∗ Math Svg Precision (=3): Number of decimal digits of preci-
sion in the image (as a fraction of a pt). Increasing this makes
the paths more precise but can increase the final size of the gen-
erated HTML.

∗ Math Svg Share Paths (=True): If true, Madoko will share all
common graphics paths among different math formulas. This
can compress the size of the final HTML significantly since every
individual glyph inside formulas will only be defined once.

∗ Math Svg Use Fonts (=False): When true, all the text in a
math formula will be included as text with a proper font refer-
ence. When false, each font glyph is statically traced as graphics
path; the latter is less efficient but portable across systems even
if fonts are not available. At at this time (2015) most browsers
usually do not have good direct font usage support and it usually
comes out looking quite bad.

∗ Dvisvg: cmd (=dvisvgm): Specify the dvisvgm program used
to generate svg’s from a .dvi (or .xdv) file. Madoko requires at
least version 1.16 of dvisvgm to work correctly; if Madoko finds
a lower version it switches automatically the rendering mode to
PNG. It is highly recommended to download the latest version of
dvisvgm when possible at the dvisvgm website where versions are
available for Linux, MacOSX, and MikTeX. For Windows with
TexLive 2016 you can extract an executable from the w32tex.org
website. Since this is somewhat involved, you can also download
a pre-compiled binary (win32,v2.1.3) from the Madoko website

http://dvisvgm.bplaced.net/
http://w32tex.org
https://www.madoko.net/download/dvisvgm-w32-2.1.3.zip


5.1. Metadata 71

and put it in the c:\texlive\2016\bin\win32 folder.
∗ Math Dpi: dpi (=300): Does not apply directly to scalable vec-
tor graphics since these can render at any scale. However, this
setting is still taken into account for rebuilding all mathematics.
By changing the value a little you can force rebuilding all math.

When generating png images, the following options apply:

∗ Math Dpi: dpi (=300): The resolution at which the images are
rendered. The default is a fairly high resolution. Decrease it to
make the generated images smaller. Use the -vv flag to see the
sizes of all the images generated for formulas.
Note: you can also use this setting to easily rebuild all the math-
ematics in your document by changing the value little bit.

∗ Math Scale Png: scale (=108): Scaling in percentage used for
math extract to a .png image. The default looks quite good for
most fonts, but you may want to change it depending on the
main font used.

∗ Convert: cmd (=convert): Specify ImageMagick’s convert com-
mand that is executed for images that are generated from PDF
output. By default, any full math uses convert to extract from
PDF.

∗ Dvipng: cmd (=dvipng): The command used to extract .png
images from the .dvi files generated by LaTeX. By default, any
plain math is processed using latex and uses dvipng to extract
images.

∗ Dvips:, Ps2pdf: cmd: These commands are used for full math
if the key Math Latex Full is set to plain latex in which case
Madoko needs to extract a PDF from the DVI file.

The following keys are used when math mode is dynamic:

– MathJax (=false): Set this key to the path of your MathJaX script.
Set this key to True to include the standard secure script to the latest
MathJaX installation on the CDN network.
MathJax: True

– MathJax Ext: requires that the MathJax is key is set. Adds a Math-
JaX extension to the loaded scripts. See Section A.5 for more infor-
mation.

5.1.3. LaTeX keys
For LaTeX output, the following keys are relevant:

• Document Class or Doc Class (=book): Specify the LaTeX document
class. Can be prefixed with its options using square brackets:

http://www.imagemagick.org/script/binary-releases.php
http://docs.mathjax.org/en/latest/start.html%23secure-access-to-the-cdn


72 Chapter 5. Syntax: Metadata and Styling

Document Class: [9pt]article

Madoko.net: When leaving out the extension, Madoko assumes this is a
standard LaTeX document class (available from CTAN). If an extension
is given, the file is loaded (or created) from the current directory.

• Package: Specify a LaTeX package that is included via \usepackage. The
package name can be prefixed with its options using square brackets.

Package: fancyhdr
Package: [colorlinks=true]hyperref

If the package name ends with .tex and has no options, it will be in-
cluded using the \input command instead. You can clear the package
list using Package: clear. This can be used to not include the default
madoko2.sty package.
Sometimes, a package does not work when typesetting mathematics in
plain LaTeX. This can happen for example if the rest of the document
needs a package that only loads in some other latex engine, like XeLaTeX.
In that case, you can exclude the package when typesetting basic math
by using the star option:

Package*: pgfplots

Madoko.net: When leaving out the extension, Madoko assumes this is
a standard LaTeX package (available from CTAN). If an extension is
given, the file is loaded (or created) from the current directory.

• Tex Header: The value is included as is before the \begin{document}
command of the LaTeX output.

• Tex Header*: The value is included as is before the \begin{document}
command of the LaTeX output but excluded when rendering basic math-
ematics.

• Tex Doc Header: The value is included as is right after the \begin{document}
command of the LaTeX output.

• Tex Doc Header*: The value is included as is right after the \begin{document}
command of the LaTeX output but excluded when rendering basic math-
ematics.

• Maketitle (=True): If True, the \maketitle command is used to typeset
the title and authors instead of using the standard Madoko styling.

• Bib Label:(False|True|Keep|Hide) (=False): Signifies how the bibliog-
raphy items are labeled by LATEX By default the LATEX label is suppressed.
By setting Bib Label to True, the default LATEX is used. Keep resets the
bibliography label to the default LATEX definition while Hide suppresses

https://www.madoko.net
https://www.madoko.net


5.2. Entities 73

the LATEX label but keeps the whitespace. Some styles and packages in
LATEX require sometimes one these variants. For example, the standard
LIPiCS style in Madoko.net uses Bib Label: True to render the bibliog-
raphy item labels in the right style required by LIPiCS document class.

5.1.4. Conditional metadata
Sometimes it is convenient to apply a certain metadata rule only for specific
output formats or specific situations. For this you use a conditional block. For
example, to only add a logo when generating HTML, you can say:
@if html {
Logo: True

}

You can standard CSS conditional rules. To make all subsections blue except
when generating a PDF, you can say:
@if not tex {
h2 { color: blue }

}

Any metadata value can be referenced in the conditional expressions. Some
useful entities are defined by Madoko by default:

• html: True when generating HTML output.
• tex : True when generating LaTeX/PDF output.
• preview: True when generating HTML in the Madoko.net preview.

You can also create your own metadata values, for example:
draft: True

@if not draft {
Todo { display: none }

}

5.2. Entities
Madoko uses entities extensively. If Madoko finds an entity name (&name;) it
looks up the name in various places: if there is a block element with that id,
the entity name is replaced by the label value of that block (see Section 4.2). If
there is no block with that identity, Madoko looks if there is a metadata value
with that name, and replaces the entity name with its value:

The title of this document is "&title;".\
And this section has label &sec-entity;.\

https://www.madoko.net
http://www.w3.org/TR/css3-conditional
https://www.madoko.net


74 Chapter 5. Syntax: Metadata and Styling

Standard entities are looked up last &Delta;&hArr;&delta;.

The title of this document is “Madoko Reference”.
And this section has label 5.2.
Standard entities are looked up last ∆⇔δ.

Entity names for labels and metadata values, can consist of letters, underscores,
minus signs, and digits. In contrast to regular HTML entity names, Madoko
compares the entity name for labels and metadata in a case-insensitive way.

Note that if label or metadata values contain themselves entities, these are
expanded recursively (up to a certain limit) which can provide a powerful ab-
straction mechanism. For example, if we define a metadata value Title2:
Title2: (&Title;,&Title;)

then the entity &Title2; expands to “(Madoko Reference,Madoko Reference)”.
If entity names are used inside attributes, Madoko first looks for the name

as one of the attribute key values. For example, you can use names like &id;,
&class;, and &label;.

Some predefined metadata keys are quite useful as entities:

• &date;. The current (compilation) date in ISO 8601 international format.
• &time;. The current (compilation) time in ISO 8601 international format.
• &year;,&month;,&day;. The current year, month, and day.
• &hours;,&minutes;,&seconds;. The current hours, minutes, and seconds.
• &madoko-version. The version of the Madoko compiler.
• &docname;. The file name of the document without extension and direc-

tory.
• &filename;. The full file name of the document.
• &eg;. Expands to “e.g.” (“exempli gratia”, “for example”).
• &ie;. Expands to “i.e.” (“id est”, “that is” or “in other words”).
• &etal;. Expands to “et al.” (“et alii”, “and others”).
• &logotex;. Expands to “TEX”.
• &logolatex;. Expands to “LATEX”.
• &logolatexe;. Expands to “LATEX2ε”.
• &logobibtex;. Expands to “BibTEX”.

There are also a few special entity names:

• &nl;. Expands to the newline character.
• &br;. Expands to a forced line break (i.e. <br>).
• &null;. Expands to an empty string.
• &source;. Inside attributes, expands to the literal content of the element.
• &&;. Expands to the literal & character. This is necessary sometimes since

entity expansion is done recursively without regard for other formatting
attributes. For example, if you have a metadata value Foo that needs to
expand to `&amp;`, you would need to write it as:

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601


5.3. CSS Attributes and Styling 75

Foo: `&&;amp;`

or otherwise the &amp; part would get expanded even within the back
ticks. The reason why Madoko expands regardless of other formatting is
to allow powerful abstraction where we can for example build up regular
expressions from smaller parts.

For some examples of the usage of these elements, see Sections 5.6 and 5.5.2.

5.3. CSS Attributes and Styling
Writing Madoko documents is clearly about content: the main advantage of
using a markdown format is that it allows the writer to concentrate on prose
and content instead of formatting. However, in the final stages it is desirable to
style a document to make it look good. This section describes some tricks and
tips that can help doing this well.

5.3.1. CSS Attributes
An essential addition of Madoko is good support for attributes. The syntax is
like CSS attributes and denoted between curly braces:
{ key: value; key: value }

Moreover, there are two convenient shorthands for names (id:name) and classes
(class:classnames) using a # and .:
{ .class; #id; key: value }

For most block elements, like lists, paragraphs, block quotes, etc, you can write
attributes on the line directly following the block. For list items, the attributes
directly follow the item:

This is a paragraph in small-caps.
{ font-variant: small-caps}

* {color: navy} This is a 'mylist'
* in italics
{ .mylist; font-style: italic }

This is a paragraph in small-caps.
• This is a ‘mylist’
• in italics

For fenced code blocks, custom blocks, and headers, the attributes are specified
on the first line.



76 Chapter 5. Syntax: Metadata and Styling

For inline elements, you can follow links, images, code, and bracketed text
(between [ and ]) with attributes. Bracketed text with attributes become a
<span> in the HTML backend. It is of course recommended to put attributes
when possible in link or image definitions themselves:

Here is an ![butterfly] image.
With [bold]{font-weight:bold} text, and even the
T[E]{vertical-align: -0.5ex; margin-left: -0.25ex; \

margin-right: -0.25ex}X
logo.

[butterfly]: images/butterfly-200.png { width: 100px; vertical-align: top }

Here is an image. With bold text, and even the TEX logo.

Note that inside attributes, and also metadata values, a backslash followed
by a newline acts as a line joiner and removes the newline and the following
whitespace before processing the attributes. This is convenient when defining
long strings inside attributes. For example, if a figure has a long caption, we
could write it as:

~ Figure { #myfigure; \
caption: "Here is a really \

long caption." }
...
~

To get a literal line break inside an attribute string, use the entity &nl; instead.

5.3.2. CSS formatting support
Attributes that are not special to Madoko (as described in Section 5.3.7), are
passed as CSS style attributes in the HTML backend. For the LaTeX back-
end, Madoko processes many CSS formatting commands and translates them to
appropriate LaTeX commands (and ignores all others). Currently formatting
commands that are recognized across backends are:

• display: (block | inline | inline-block | none)
• margin: [auto | length | percentage]{1,4}
• margin-left,margin-right,margin-bottom,margin-top
• padding: [auto | length | percentage]{1,4}
• padding-left,padding-right,padding-bottom,padding-top



5.3. CSS Attributes and Styling 77

• width: length | percentage | auto | available | normal
• height: length | percentage | auto | available | normal
• min-width, max-width
• min-height, max-height
• vertical-align: (top | middle | bottom | baseline | sub | super |

text-top | text-bottom | length)
• border: [width] [style] [color] (in any order)
• border-style: (none | solid | dotted | dashed | double | groove |

ridge | inset | outset)
• border-left-style, border-right-style, border-top-style,

border-bottom-style.
• border-width: length
• border-left-width, border-right-width, border-top-width,

border-bottom-width.
• border-color: color
• border-left-color, border-right-color, border-top-color,

border-bottom-width.
• border-radius: length [length]
• border-top-left-radius, border-top-right-radius,

border-bottom-left-radius, border-bottom-right-radius.
• background-color: color.
• background-clip: border-box | padding-box | content-box
• color: color
• text-align: (center | right | left | justify)
• text-indent: length
• line-height: length
• font-style: (italic | oblique | normal)
• font-variant: (small-caps | all-small-caps | petite-caps |

all-petite-caps | normal)
• font-weight: (bold | bolder | lighter | normal | number)
• font-size: (xx-small | x-small | small | medium | large | x-large |

xx-large | length | percentage)
• font-family: (monospace | serif | sans-serif | cursive | fantasy |

normal | family)
• float: (left | right). Limited support at this time in LaTeX.
• list-style-type: decimal | lower-roman | upper-roman |

lower-alpha | upper-alpha | lower-latin | upper-latin | disc |
circle | dash | square | none

• page-break-before,page-break-after: always | avoid | left | right
| recto | verso | auto | penalty. In PDF output, auto is interpreted as a
good page break (\goodbreak) and penalty is passed to the LaTeX
\penalty command.

The following attributes are supported on images only:

• zoom: fraction | percentage
• transform-scale: fraction | percentage



78 Chapter 5. Syntax: Metadata and Styling

• transform-rotate: angle. Anti-clockwise rotation in degrees.

Some attributes are only applied during PDF output:

• breakable: true | false. Makes the box breakable over a page.
• height-align: top | middle | bottom. Vertical alignment of the content

in a fixed height box.
• baseline: top | middle | bottom. Placement of the baseline of a box.
• page-align: (top | bottom | topbottom | page | here | forcehere |

inplace). Used for float placement in LaTeX for Figure custom blocks
(see Section 4.13.1).

5.3.3. CSS font family
A font family is a comma separated list of fonts. In LaTeX, any font that starts
with tex- is processed before any other fonts. There are the following ways to
specify the font:

1. serif, sans-serif, monospace, cursive, fantasy: The standard CSS
fonts.

2. tex-family-[encoding/]family[/series][/shape][/scale]: Specify an exact
LaTeX font to use.

• encoding: Optional LaTeX font encoding, for example T1 or OT1.
• family: The LaTeX font family code, for example cmr for Computer

Modern. Some codes can be found at Wikipedia.
• series: Optional, one of l (light), m (medium,normal), b (bold), or

bx (extra bold).
• shape: Optional, one of n (normal), it (italic), sl (slanted), sc

(small-caps), or bf (bold-face).
• scale: Optional, fraction to scale the font, for example 0.81.

For example, to typeset code fragments in HTML with Consolas and in
PDF output using the beramono fonts (=fvm), you can specify a metadata
rule:

pre,code {
font-family: Consolas, "tex-family-T1/fvm/0.81";

}

3. tex-cmd-cmd: Specify a LaTeX command to use, for example tex-cmd-sffamily.

4. tex-font[[font options]]: Specify a general system font to be used in La-
TeX only. You can pass the \fontspec font options between square brack-
ets. For example: font-family: "tex-Consolas[Scale=2,PunctuationSpace=3]".

https://en.wikibooks.org/wiki/LaTeX/Fonts%23Serif_Fonts
http://www.tug.dk/FontCatalogue/beramono/


5.3. CSS Attributes and Styling 79

5. fontname: In all other cases the name is directly passed to the \fontspec
command. If using the default xelatex any system font can be used this
way.

~ { font-family: Georgia }
This is in the Georgia font.
~

This is in the Georgia font.

5.3.4. CSS colors
A color can be standard named color or use any of the CSS color formats,
namely:

• #rrggbb (or #rgb) where xx is hexadecimal, e.g. #0000FF .
• rgb(r,g,b) where each component is a number between 0 and 255, or a

percentage, e.g. rgb(50%,50%,100%) .
• hsl(h,s,l) where h is an angle between 0 and 360, and s and l percent-

ages. Use 50% for the default lightness, e.g. hsl(240,100%,80%) .

The recognized named colors are any of the standard CSS Level 4 colors. For
example, the basic CSS colors are shown in Figure 6.

If you would like to use another named color that is not part of the CSS
named colors, you can often just define an entity in the metadata:
MyIndigo: #4B0088

and use Madoko’s expansion to use it inside an attribute:

This is "[MyIndigo]{color: &MyIndigo;}".

This is ”MyIndigo”.

5.3.5. Complex CSS Layout
In general, it is hard to emulate a complex CSS layout in LaTeX so some par-
ticular combinations may not work as expected in LaTeX. We strive to make
it work seamlessly though so please report any issues. Nevertheless, the above

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
http://madoko.codeplex.com/workitem/list/basic


80 Chapter 5. Syntax: Metadata and Styling

Name Hex value Color

Red #FF0000

Lime #00FF00

Blue #0000FF

Yellow #FFFF00

Cyan,Aqua #00FFFF

Magenta,Fuchsia #FF00FF

Maroon #800000

Green #008000

Navy #000080

Olive #808000

Teal #008080

Purple #800080

Orange #FFA500

Black #000000

DimGray #696969

Gray #808080

DarkGray #A9A9A9

Silver #C0C0C0

LightGray #D3D3D3

White #FFFFFF

Gainsboro #DCDCDC

FloralWhite #FFFAF0

Ivory #FFFFF0

Figure 6. The basic CSS colors



5.3. CSS Attributes and Styling 81

formatting commands should suffice in most situations and we can program
already many fancy examples:

[**Aaaa[a]{vertical-align:-0.3ex}
[aa]{vertical-align:-0.7ex}
[r]{vertical-align:-1.4ex}
[g]{vertical-align:-2.5ex}
[h]{vertical-align:-5ex}**]{font-size:large; height:0pt }
he shouted but not even the next
one in line noticed that something
terrible had happened to him.
{ width: 18em; border: solid 1px black; \

padding: 1ex; background-color: FloralWhite }

Aaaaa aa r g
h

he shouted but not
even the next one in line noticed that some-
thing terrible had happened to him.

The following example shows a complex box layout with background clipping
and elliptical borders:

Here is the content of a complicated box with back&shy;ground clipping
and elliptical borders with smooth transitions.
{ margin-right:6em; \
padding:1.5em; \
background-color:floralwhite; \
background-clip: padding-box; \
border: 0.75ex solid black; \
border-radius: 4ex; \
border-top-left-radius: 8ex; \
border-left-width: 1.5ex; \
border-left-color: teal; \
border-right-style: double; \
width: 22.2em;\

}

Here is the content of a complicated box with back-
ground clipping and elliptical borders with smooth
transitions.



82 Chapter 5. Syntax: Metadata and Styling

5.3.6. Floating blocks
There is limited support for the float attribute but it is generally quite hard
to emulate this well in LaTeX. However, one can use the float attribute to put
figures or general custom blocks on the left- or right-side of a page and have
text flow around it. For example:

~ Figure { caption:"A formula"; width:60%; float:left; margin-right:1em }
~~ Math
e = mc^2
~~
~
"Aarghhh", he shouted but not even the next
one in line noticed that something
terrible had happened to him.
"Aarghhh", he shouted but not even the next
one in line noticed that something
terrible had happened to [him.]{float:right}

e = mc2

Figure 7. A formula

“Aarghhh”, he shouted but
not even the next one
in line noticed that some-
thing terrible had hap-
pened to him. “Aarghhh”,
he shouted but not even
the next one in line noticed
that something terrible had

happened to him.

Note that it is important to give a specific width when specifying float. Also,
in LaTeX, the height of the text flowing around the float is not always correct
(especially if the text contains mathematics). To fine-tune the appearance in
LaTeX, one can use the tex-wrap-lines key to give the height of the float
figure in text lines. Internally, Madoko uses the wrapfigure environment to
render this. You can customize this with the tex-wrap-env key. When using
wrapping, you can also specify the key tex-float: with the values inside or
outside to wrap to the inside or outside of a page.

Still the LaTeX command is fragile and generally works best when immedi-
ately followed by a paragraph. Also, when using float on inline elements, it
is implemented in LaTeX simply using \hfill which works for most common
situations.



5.3. CSS Attributes and Styling 83

5.3.7. Special attributes
Normally, attributes are always passed to LaTeX as is, and in the HTML passed
as CSS attributes. However, you can use special prefixes to have them end up
at other places:

• html-name: use name as an HTML attribute only in the HTML backend.
For example, you can use html-target=_top for links inside frames.

• css-name: use name as a CSS attribute only in the HTML backend. For
example, you can use css-font-family=Cambria for setting a font family
only in the web page.

• tex-name: use name as an attribute only in the LaTeX backend.
• data-name: in the HTML backend uses a HTML attribute data-name

instead of a CSS style attribute. Passed to LaTeX as is.

Some attributes have a special meaning to Madoko. In particular:

• tight: If true suppresses enclosing the first text content in this block as
a paragraph. This is used for example for a BibItem block.

• tag: If false suppresses the output of a div tag (or LaTeX environment)
for a custom block.

• toc, toc-line, toc-depth: Used for generating custom table of contents.
Used for example by headings. See Section 4.11 for more information.

• before, replace, and after: Used to transform the content of the block.
See Section 5.6.

• start:num: Gives the start number for an ordered list (Section 4.4).
• target:frame: Gives the HTML frame target for a link.
• math-needpdf: If true, forces the pdf conversion method for an equation

(instead of using dvi). This is needed when using fancy LaTeX math
using TikZ for example.

• snippet-needpdf: If false, uses the dvi conversion method for a snippet
(instead of using pdf). This can improve performance of image extraction.
(Section 4.10.6).

• html-elem=elem: Use elem as the HTML element instead of div or span
for block and inline elements respectively.

• id:id: Sets the id of an element. Usually this is done using a hash name
directly as #id.

• class:classes: Adds to the classes of this element. Usually set using a
dot name as in .class. If you use class=clear, the classes are cleared.
Similarly, you can use .class=clear to remove one particular class.

• label:label: Sets the label of an element. This is used when referencing
this block as explained in Section 4.2

• caption:caption: Sets the caption of figure as explained in Section 4.3.
• breakable:(true|false). Specifies if a block element can be broken

across multiple pages. For example, for tables the LaTeX backend will
use the longtable environment instead of the regular tabular environ-
ment (which cannot break across pages).



84 Chapter 5. Syntax: Metadata and Styling

• cite-label:label: Sets the citation label of an BibItem block. This is
used when referencing a bibliography item as explained in Section 4.12

• cite-style:style: Sets the citation style for a citation (Section 4.12.2).
• tex-wrap-lines:lines: Set the height of a float figure to lines height

(Section 5.3.6).
• sticky: The attributes for this element will stick to apply to all of the

same elements that follow in the document.
• -: clear any attributes that have been set before (usually through meta-

data rules).
• input:input. Sets the input mode of this block which determines how the

content of this block is processed. One of:

– pre: Preformatted code (Section 4.8).
– raw: Raw unprocessed input that is passed directly to the output.
– texraw: Raw TeX code that is passed directly to LaTeX (See TeXRaw)
– htmlraw: Raw HTML code that is passed directly to the HTML

output (See HtmlRaw)
– math: LaTeX mathematics mode input. This input is usually invoked

through an Equation block as described in Section 4.10.
– mathpre: Preformatted LaTeX mathematics. This input is usually

invoked through a MathPre block (Section 4.10.7).
– mathdefs: LaTeX math definitions. This input is usually invoked

through a MathDefs block (Section 4.10.3).
– normal, markdown: Regular Madoko markdown input (default).
– texonly: Regular Madoko markdown that is only processed when

generating LaTeX output. Usually used through the TexOnly block
(Section 4.13).

– htmlonly: Regular Madoko markdown that is only processed when
generating HTML output. Usually used through the HtmlOnly block
(Section 4.13).

See also the special attributes used for custom LaTeX styling in Section A.7.

5.3.8. Special attribute classes
Some class attributes are treated specially by Madoko. In particular:

• .preview. This class is set on the <body> element in the preview and
can be used to style elements differently in the preview versus the full
document.

• .para-block. If a block element has the .para-block class, it will con-
sidered part of the preceding paragraph (and not end that paragraph).
This is for example done for the Equation block since equations are part
of a paragraph. This improves typography significantly, especially for the
LaTeX backend. Madoko will also assign the para-continue class to the
paragraph preceding a .para-block element.

• .para-end: Normally, equations have a .para-block class and are thus



5.4. Metadata rules 85

considered part of the paragraph. If you would like such block to be
the end of a paragraph, you should assign the .para-end class to end it
explicitly. In the LaTeX backend this will cause the next paragraph to be
indented.

• .indent. This class is automatically added by Madoko to any paragraph
that follows other paragraphs or .para-blocks (and is not inside a list).
This can be used to switch from block mode paragraphs to indented para-
graphs using some CSS rules: p.indent { text-indent: 1em }

• .align-center, .align-right, .align-left. These classes align the
content of a block (instead of the block itself) to the center, right, or left.

• .hidden. Hides the content of the block.
• .block. Treat this as a block element instead of inline content. For

example, in HTML output this will add a top and bottom margin to the
element.

• .wide. Used for Figure blocks: in a two-column output, this figure will
span both columns horizontally (see also Section 4.13.1).

• .free, .textual. These classes are used for typesetting citations (see
Section 4.12.2).

• .list-star, .list-dash, .list-plus. Used to customize appearance of
bullets in a list.

• .code,.coden: added to inline code elements where n is the number of
back-quotes. This way you can add special styling to double quote inline
code for example.

• .pre-fenced, .pre-fencedn: Added to fenced code blocks where n is the
number back-quotes.

• .pre-indented: Added to indented code blocks.
• .math-inline: Added to inline math fragments.
• .math-display: Added to block math fragments.

5.4. Metadata rules
Often, we need to apply specific attributes and formatting to certain elements
or custom blocks. This can be done using metadata rules. These rules function
much like regular CSS rules except that they are quite a bit more limited. You
can use a chain of an element name, identifier (#id), or class names (.class) for
matching. The value of a rule are attributes that get applied to any matching
block. Here are some examples:

Blockquote { font-style: oblique }
.bold { font-weight: bold }
#myblock { border: 1px solid black }

This would typeset a block quotes in an oblique font, any block with a bold
class in bold, and the block with the myblock id with a solid border. You can
also use a comma separated list of matches that apply to all. For example, we
can give all code, inline or as a block, the class prettyprint as:



86 Chapter 5. Syntax: Metadata and Styling

pre,code { .prettyprint }
p.indent, blockquote.indent { text-indent: 1em }

5.4.1. Names of predefined elements
Most standard Madoko block elements, like lists or block quotes, can also be
targeted by rules. Their element names are the standard HTML names, namely:

Element Name
Paragraph p
Code block pre
Code inline code
Code escaped text code-escaped
Block quote blockquote
List ul
Numbered list ol
List item li
Definition list dl
Definition term dt
Definition dd
Horizontal rule hr
Table table
Heading h1,…,h6
Unnamed custom block div
Named custom block name

Note that every custom block blockname automatically also gets the class block-
name and is thus matched by both blockname and .blockname rules. This can
be also be useful when applying styles in CSS rules.

Some standard elements also get standard class names assigned to make it
easier to target them with specific rules:

Element Class name
Code block that was indented .pre-indented
Code block that was fenced .pre-fenced
Code block with n back-quotes .pre-fencedn
Code inline with n back-quotes .coden
Math inline .math-inline
Math block .math-display
List using * .list-star
List using + .list-plus
List using - .list-dash

For example, you could specify that any indented code blocks should use the
javascript syntax highlighter:
.pre-indented { language:javascript }

Or typeset double-quoted inline code (i.e. ``code``) with a gray background:



5.5. Numbering 87

.code2 { background-color: gainsboro }

5.4.2. Advanced: Styling in CSS
Sometimes we only want to apply certain styling to just HTML. For HTML,
styling through classes works best: we can simply write some CSS (and include
it through the Css or Css Header metadata or directly within <style> tags.).
For example,

<style>
.slanted { font-style: oblique; font-family: Cambria }
</style>

Note that any custom block in Madoko (like ~ Slanted) automatically gets
assigned the class name slanted and can thus be matched easily in CSS.

For styling in LaTeX, or when certain CSS keys are not yet processed in
LaTeX, see Appendix A.7.

5.5. Numbering
For larger documents, numbering sections, figures, tables, images, etc. is quite
important and Madoko supports this well. By default, Madoko will number
headers, figures, and equations. Numbering for headers is by default up to
3 levels, but it can be set for the document using the Heading depth meta
variable. If it is set to zero, it suppresses numbering for headings completely:

Heading Depth: 0

5.5.1. Advanced: Custom numbering
The numbering can be completely customized though. Counters are introduced
using @name syntax in attributes. When such counter name occurs, it is au-
tomatically incremented. If the value of a label contains a counter name, it is
replaced by its current value. For example, the default attributes for equations
contain:

{ @equation; label:"(@equation)" }

This automatically will increment the @equation counter at each occurrence of
an equation block element, and set its label to the current value surrounded by
parenthesis. Similarly, the default label for main sections is defined as:

{ @h1; label:"@h1" }

Actually, Madoko automatically increments counters with the same name as the
block, so in the previous two cases, we should leave out @equation and @h1 or
we do double increments.



88 Chapter 5. Syntax: Metadata and Styling

Of course, for headers we like to display the label by default in front of
the header text. This can be done using the before attribute where we use
the &label; key to insert the value of the label. So, the full definition for level
1 headings is:
{ label:"@h1"; before:"&label;.&ensp;" }

5.5.2. Advanced: Reset counters
If a counter has a dash in its name, of the form @prefix-name, then the counter
will be reset on every increment of the counter prefix. For example, the counter
for subsections is reset on every new section (using metadata rules):
h2 {
@h1-h2; label:"@h1.@h1-h2"; before:"&label;.&ensp;";

}

Similarly, a counter like @h1-h2-h3 would reset on every increment of counter
@h1 or @h1-h2.

5.5.3. Advanced: Display format
The counters above are displayed as arabic numbers but sometimes we would
like to display a number using other formats. When you assign a single letter to
a counter, it will continue counting using letters. This is nice for example when
starting the appendix where each section is generally numbered using letters:
# Appendix (not numbered at all) {-}

# Section one of the appendix { @h1:"A" }
This section will be numbered as 'A'

# Another appendix section
This section will be numbered as 'B'

The display format of a counter can also be set independently of setting its value.
Currently, Madoko supports arabic/decimal, arabic0/decimal0, upper-case/upper-alpha/upper-latin,
lower-case/lower-alpha/lower-latin, decimal-leading-zero, lower-roman,
upper-roman, lower-greek, upper-greek, cjk-decimal, symbolic, circled-decimal,
disc, square, circle, dash, and none. The style arabic0 starts counting at
0. Assigning a single letter, like @h1:"A" in the previous example is just a
shorthand for:
{ @h1:upper-alpha; @h1:1 }

As a final example, suppose we would like to count figures using lower-case
letters and per section. We can do this by defining the default attributes for
figures as a metadata rule:
Figure {



5.6. Advanced: Replacement 89

@h1-figure:lower-alpha; @h1-figure; label:"@h1\/-@h1-figure";
}

The label definition here displays figure labels of the form 2-b for example
(where we used the empty escape sequence \/ to prevent the counter name @h1
being read as @h1-). Note that because this is a metadata rule, we could not
use the assignment @h1-figure:"a" here, or otherwise every figure would get
numbered as a. In this case we just want to set the display mode here and not
a specific value. Also note that we still need to explicitly increment the counter
too (using a plain @h1-figure) since just setting the display format does not
increment the counter.

5.6. Advanced: Replacement

Madoko has three attributes that can transform the content of block or inline
element, namely before, after, and replace. The before and after elements
just add content before and after:

~ Myblock { before="*Myblock*: " after="." }
the content
~

Myblock: the content.

The replace attribute replaces the entire content with its value. You can have
multiple replacers and they are all applied in order. The replacers can be cleared
using the special clear value. Finally, all replacers can contain entity names
(Section 5.2) which are expanded. Useful entities are &source; which expands
to the current content of the block (possibly having already some replacers
applied), and &nl; which expands to a newline character. In particular, before
and after are defined in terms of replace, where before=value is just syntactic
sugar for replace=value\/&source; and similarly for after.

As an advanced example, for this document I defined a metadata rule for
the Sample custom block that replaces its content by both a code block and a
regular markdown block. In a simplified form, it is defined as:

Sample {
replace:"~ Begin SampleBlock&nl;\

````&nl;&source;&nl;````&nl;\
---- &nl;&source;&nl;\

~ End SampleBlock"
}



90 Chapter 5. Syntax: Metadata and Styling

5.6.1. Advanced: Regular expression replacement
A replace attribute can also define a general regular expression replacement of
the form /regex/replacer/(g|i|m|c)?. The regular expression regex is matched
against the content, and a match is replaced by replacer. The options are:

• g: instead of just the first match, it will globally replace all matches found
in the content.

• i: use case-insensitive matching.
• m: do a multi-line match where ^ and $ match the beginning and end of

each line respectively instead of just the start and end of the content.
• c: do case conversion; enlarges valid escape characters with one of luLUE

which can be used to do case conversion, see the next section for more
information.

Inside the replacer we can use the following escape sequences:

• \digit: gets replaced by the digit capture group in regex.
• \/: becomes a forward slash.
• \\: becomes a single backward slash.

For example, here is an example where we replace <quoted> text by single
guillemet quotes:

~ { replace="/<(.*?)>/&lsaquo;\1&rsaquo;/g" }
Here is < quoted > text.
~

Here is ‹ quoted › text.

Case conversion

When we pass the c flag, we can also use special case conversion escape sequences
in the replacer expression:

• \U or \L transform the following text up to the next \E (or the end of the
replacement) to upper- or lower-case respectively.

• \u and \l replace the following character to upper- or lower-case.

~ { replace="/(\w+)/\u\1/gc" }
all words to title-case.
~

All Words To Title-Case.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions


5.6. Advanced: Replacement 91

Mapping strings

The replace attribute can also perform a mapping when it has the form:

// regex1 / repl1 // … // regexn / repln //(g|i|m|c).

A mapping matches against the regular expression (regex1)|…|(regexn), and
when it finds a match on some group i, it applies the replacer repli. The re-
placement expression can use capture groups as usual.

For example, we could device a greek or hiragana mode replacement. Here
is a simplified example:

~ Greek { replace:"//a/&alpha;//d/&delta;//n/&nu;//g" }
greek daan.
~
~ Hiragana {replace:"//ko/&#12371;//ni/&#12395;\

//\\(.)/\1//chi/&#12385;//ha/&#12399;\
//n/&#12435;\
//g"; \

font-family: "MS Gothic"; }
konnichiha is Japa\nese.
~

greek δααν.
こんにちは is Japanese.

Note that the previous example generally needs a font-family specification to
display correctly in LaTeX since Japanese characters are not in the standard
font. See Appendix A.8 for more information.

5.6.2. Advanced recursion and replacement
As more advanced example of recursion and replacement, we can actually cal-
culate fibonacci numbers. In the following sample, n number of x characters
are replaced by fib(n) y characters:

How many `y`'s is the Fibonacci of 5 `x`'s?
~ Fib
xxxxx
~

How many y’s is the Fibonacci of 5 x’s?yyyyyyyy

http://en.wikipedia.org/wiki/Fibonacci_number


92 Chapter 5. Syntax: Metadata and Styling

This is done through the following metadata rule:
Fib {
replace:'/^x?$/y/';
replace:'/xx(x*)/~Fib&nl;x\1&nl;~&nl;~Fib&nl;\1&nl;~/';
tag:false;
tight:true;

}

The first replacer will replace a single optional x with a y. The second one
matches 2 or more x’s, and replaces these recursively by two new Fib blocks:
one with n-1 and one with n-2 x characters. These blocks will get processed now
recursively. Finally, by using the tag:false attribute we suppress the inclusion
of many div elements in the HTML, while the tight attribute suppresses the
addition of paragraph elements.

This example shows the replacement facility of Madoko is quite powerful.
It is even possible to define a generic SKI combinator expander which makes
Madoko’s replacement mechanism (almost) Turing complete5.

5Almost, since Madoko expands only up to a certain limit and since regular expressions
cannot express arbitrary nesting levels.

http://madoko.codeplex.com/SourceControl/latest%23test/new/extra_ski.text


References

[1] J. Fagerberg, D.C. Mowery, and R.R. Nelson, editors. Oxford Handbook of
Innovation. Volume 1. Oxford University Press, Oxford. 2004.

[2] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX
Companion. Addison-Wesley, Reading, Massachusetts. 1993.

[3] O. Grandstrand. “Innovation and Intellectual Property Rights,” in Fagerberg
et al. [1], volume 1, chapter 10. 2004.

[4] Donald E. Knuth. The TEX Book. Addison-Wesley. 1984.

[5] Leslie Lamport. LATEX: A Document Preparation System (2nd Edition).
Addison-Wesley. 1994. See also [4].



94 References



Chapter 6

Appendix

A.1. Command line options
Generally Madoko is invoked on the command line as:

• madoko [options] files

where the options can consist of:

Short Long Description
--version Display version information.

-v --verbose Be more verbose.
--odir=dir Write output files to the specified directory (=out)
--xmp Only process markdown between <xmp> tags.
--tex Output a LaTeX file too.
--pdf Generate a PDF file (implies --tex).
--texzip Generate TeX zip for submission
--png Use PNG instead of SVG for math in HTML
--convert-tex Convert input from TeX to Markdown

-f --fragment Generate a fragment instead of a full document.
--logo Add a ‘Created with Madoko.net’ message.
--sandbox Run in a sandbox for secure server execution.
--sanitize Always escape or suppress user defined html.
--pedantic Pedantic mode.
--bench For benchmarking: turn off numbering, etc.
--installdir=dir Set installation directory explicitly.

-r --rebuild Force rebuild bibliography, math, etc.
--prelude=file Include file at start of the document

-mkey:val --meta=key:val Semi-colon separated list of metadata values

All the boolean flags can be negated by prefixing them with no-, for example
to suppress the logo message at the end of a document, use --no-logo.

The verbose flag (-v) can be repeated to become more verbose. For example,



96 Chapter 6. Appendix

by using -vv LaTeX warnings and the size of math images are displayed.
Normally, Madoko writes the output files to the out directory (relative to

the input file) but you can override this with the --odir option. The HTML
output for a file file.mdk consists of file.html and madoko.css. The latter
contains standard styling for Madoko and is necessary for example to display
lines in tables correctly. For LaTeX output (--tex), Madoko also emits file.tex
and the madoko2.sty style file which contain necessary commands to process
the Madoko output in LaTeX.

The --texzip option lets you generate a zip file that contains all necessary
files to generate a PDF using LaTeX. Often this is required for academic sub-
missions. Madoko will automatically include any necessary images, packages,
etc.

The --xmp option instructs Madoko to only process content between <xmp>
and </xmp> tags. This can be useful if the main body of your document is in
HTML and only some parts are written in Madoko.

The --fragment flag forces Madoko to generate a document fragment. By
default, a full document is generated which is self sufficient and contains for
example for HTML proper <head> and <body> elements instead of just the
markup for the content. Similarly, for LaTeX, a full document contains an
\documentclass, \begin{document} and necessary \usepackage commands.
For a fragment, just the content is generated without those headers and footers.

The -m flag can be used to set metadata values. For example, when specifying
what command to use to invoke LaTeX, we can say -mpdflatex:/foo/bar/xelatex
for example.

The --sandbox flags runs Madoko in a sandbox: it can only read and
write files underneath the document directory (actually, Madoko will still read
a predefined set of styles from the styles directory, like prelude.mdk and
madoko2.sty). Moreover, documents cannot change the following metadata
keys: latex, pdflatex, dvisvg dvipng, math-latex, math-latex-full, bibtex,
math-convert, convert, ps2pdf, and dvips (actually, you can still set the la-
tex keys to a predefined set of safe latex variants, i.e. latex, pdflatex, and
xelatex). Note that this flag only influences the Madoko program, any run of
LaTeX or other external programs needs to be secured separately. In particular,
on a server we recommend using TexLive where Madoko will automatically pass
an environment with openany_in and openany_out set to paranoid, disabling
parsing of the first line of input, and disabling any shell command execution.

A.2. Slide shows and presentations
Madoko can generate excellent slide shows using either the reveal.js library in
HTML or the Beamer package in LaTeX.

Start a slide show with including the Presentation style at the start of the
document:

[INCLUDE=presentation]

http://lab.hakim.se/reveal-js/%23/
http://en.wikibooks.org/wiki/LaTeX/Presentations


A.2. Slide shows and presentations 97

Slides are now automatically started on a level 1 (#) or 2 (##) header, or by
using a ~Slide custom block explicitly. Use the .fragment class on any element
to create overlays that appear one by one. The .fragmented class can be used
on a list to have each item appear in order. For example:

# my first slide

And some content

And more
{.fragment}

And more
{.fragment}

# and my second slide

* with
* a list
* in it
{.fragmented}

The HTML slide shows support the ~Notes custom block for speaker notes, and
the ~Vertical custom block to create a set of vertical slides.

Here is a small example slide show written in Madoko (html, pdf, source).

A.2.1. Using Reveal.js

The HTML backend works with the reveal.js library:

• It uses the reveal.js library from a common CDN url. You can set your
own using the Reveal Url metadata:
Reveal Url: https://cdn.jsdelivr.net/reveal.js/2.6.2

• Select another default theme by setting the Reveal Theme, for example
Reveal Theme: sky.

• Use the data-background attribute on headings to set the background
color or background image for a slide.

• Use the data-transition attribute on headings to set the transition an-
imation. For example:
# Slide { data-transition:zoom }
## Next slide

• The Javascript revealConfig variable contains the default configuration
options and can be extended inside <script> tags.

http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/out/slidedemo.html
http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/out/slidedemo.html
http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/out/slidedemo.pdf
https://www.madoko.net/editor.html?%23url=http://research.microsoft.com/en-us/um/people/daan/madoko/samples/slidedemo/slidedemo.mdk%26options=%7B"delayedUpdate":"true"%7D
http://lab.hakim.se/reveal-js/%23/
https://github.com/hakimel/reveal.js/releases


98 Chapter 6. Appendix

A.2.2. Using Beamer
The LaTeX backend uses the Beamer package:

• Set the Beamer Thememetadata key to select another theme, like singapore
for example.

• Set the Beamer Theme Options for different options for the theme.
• Use the .pause class to insert pauses anywhere in a slide.

A.3. Advanced: Customizing citations
For each citation, you can actually change how it is displayed by setting the
cite-style attribute on the citations:

First a natural citation [@Goo93]{cite-style:natural},
then a super one[@Goo93]{cite-style:super}.

First a natural citation (Goossens et al., 1993), then a super one2.

Moreover, we can customize the formatting of citations by specifying braces etc.
The general format of a citation style is:

base [:(sort|nosort)] [:open,close,sep [,aysep] [, yysep]]

where base is one of natural, numeric, textual, or super, and the values open
to yysep are double quoted strings:

• open: the opening brace.
• close: the closing brace.
• sep: separator between citations.
• aysep: Optional separator between authors and years. Equal to sep by

default.
• yysep: Optional separator between years with a common author. Equal

to aysep by default.

For example:

Switch to a compact bold numeric style
[@Goo93;@Fberg04]{cite-style:'numeric:"[**","**]","**;**"'}
or an unsorted super
style [@Lamport:LaTeX;@Knuth:TeX]{cite-style:super:nosort}

Switch to a compact bold numeric style [1;2] or an unsorted super style5,4

http://en.wikibooks.org/wiki/LaTeX/Presentations


A.4. Advanced: Not using BibTeX 99

Clearly, one should usually only do this for the Cite Style metadata key, and
not sprinkle this kind of formatting through your prose.

A.4. Advanced: Not using BibTeX
If necessary, it is possible to completely circumvent using BibTeX and write
your bibliography entries by hand. First, we need to ensure Madoko will not
run the BibTeX tool for us:
BibTeX: False

Next, we write our bibliography entries inside a Bibliography block:
~ Bibliography { caption:"00" }
...
~

where the caption is only used in LaTeX output and should be a string that is
the widest label necessary for the numeric style. Inside the bibliography block,
you can put Bibitem blocks for each bibliography entry. For example:
~~ Bibitem { #WadlerThiemann03 }
Philip Wadler and Peter Thiemann.
_The marriage of effects and monads._
ACM Trans. Comput. Logic, 4(1):1--32, 2003.
~~

Moreover, you can add a caption that is displayed when hovering over a ci-
tation, and a searchterm that is used when the user clicks on the magnifying
glass icon:
~~ Bibitem { #WadlerThiemann03; \

caption:"Wadler and Thiemann: \
The marriage of effects and monads" \

searchterm="Wadler+Thiemann+Marriage+Effects+Monads" }
Philip Wadler and Peter Thiemann.
_The marriage of effects and monads._
ACM Trans. Comput. Logic, 4(1):1--32, 2003.
~~

The above example is for numeric style citations. For author-year citations, the
entry should have an explicit cite-label:
~~ Bibitem { #remy; cite-label:'R&eacute;my(1993)' }
Didier R&eacute;my.
_Type inference for records in a natural extension of ML._
In Carl\ A. Gunter and John\ C. Mitchell, editors,
Theoretical Aspects Of Object-Oriented Programming.
Types, Semantics and Language Design. MIT Press, 1993.
~~



100 Chapter 6. Appendix

~~ Bibitem { id:'nielson:polyeffect'; \
cite-label:'Nie:lson et\ al.(1997)Nielson, Nielson, and Amtoft'}
Hanne\ Riis Nielson, Flemming Nielson, and Torben Amtoft.
_Polymorphic subtyping for effect analysis:
The static semantics._
In Selected papers from the 5th LOMAPS Workshop on
Analysis and Verification of Multiple-Agent Languages,
pages 141--171, 1997. ISBN 3-540-62503-8.
~~

A cite-label should have the form authors(year)longauthors, where the lon-
gauthors are optional. Madoko parses these labels to correctly format citations.

A.5. Advanced: packages in dynamic math mode

In dynamic math mode packages are not loaded since MathJax cannot handle
arbitrary LaTeX packages. We need a special MathJax ‘extension’. For example,
the amscd package is available as AMScd and we can use it in MathJax as:

MathJax Ext: AMScd

Another package that is available in both Latex and MathJax is the mhchem
package:

MathJax Ext: mhchem
Package : mhchem

which can be used to easily draw chemical formulas:

~ Equation { #eq-chem; caption:"A chemical equation" }
\ce{C6H5-CHO}\quad
\ce{$A$ ->[\ce{+H2O}] $B$}\quad
\ce{SO4^2- + Ba^2+ -> BaSO4 v}
~

C6H5−CHO A
+H2O−−−−→ B SO 2−

4 + Ba2+ −−→ BaSO4 ↓ (6)

In the previous examples, it may seem superfluous to specify both a Math-
JaX extension and LaTeX package but not in all cases the names or package
functionality happens to be exactly the same.

http://www.ctan.org/pkg/amscd
http://www.ctan.org/pkg/mhchem


A.6. Advanced: Using Prettify to highlight code 101

A.6. Advanced: Using Prettify to highlight code
If you are not fond of static highlighting, you can also highlight syntax dynami-
cally using Google Prettify. Of course, this only works for HTML output, PDF
output is still highlighted using Madoko. To enable prettify, first include the
Google script in the metadata (see Section 5.1):
Script: https://google-code-prettify.googlecode.com\

/svn/loader/run_prettify.js {.preview}

and add the .prettyprint class using attributes:

``` javascript { .prettyprint; .linenums }
function hi() {

return "hi";
}
```

function hi() {
return "hi";

}

Note that Madoko automatically disables static syntax highlighting in the HTML
output if the .prettyprint class is present.

A.7. Advanced styling in LaTeX
Sometimes we need to style LaTeX code specially, or handle cases where the
CSS elements are not yet supported by Madoko (as described in Section 5.3.2).
The following attributes can be used to customize the LaTeX output:

• tex-cmd:cmd: The cmd is literally applied to the (braced) content of the
element. For example: [italic in tex]{tex-cmd: "\textit"}. If you
start the cmd with a left brace ({) the command is inserted before the con-
tent and braced on the outside. For example, [italic using a switch]{tex-cmd: "{\itshape"}.

• tex-env: env[args]: Enclose the content of the element between a \begin{env}args
and \end{env}. The args arguments are optional. For example, for an
unordered list, the prelude defines the rule

ul { tex-env: "itemize" }

• tex-cmd-inner, tex-cmd-outer, tex-env-inner, tex-env-outer: The
tex-cmd and tex-env are applied after ‘block css’, i.e. the margin, border,
and padding, but before any ‘inline css’, i.e. fonts, indentation, etc. The

http://code.google.com/p/google-code-prettify


102 Chapter 6. Appendix

inner variants apply the command last after all other formatting has been
done, while the outer variant applies before any other formatting. For
example, the prelude defines the environment for figures as:

figure { tex-env-outer: figure[&tex-float-placement;] }

• tex-env-postfix, tex-env-outer-postfix, tex-env-inner-postfix, tex-cmd-postfix,
tex-cmd-outer-postfix, tex-cmd-inner-postfix: Literally append the
value to the environment or command. For example, the prelude uses:

figure.wide { tex-env-outer-postfix: "*" }

• tex-cmd-before, tex-cmd-after, tex-cmd-outer-before, tex-cmd-outer-after,
tex-cmd-inner-before, tex-cmd-inner-after: Insert a command right
before or after, the most inner, middle, or most outer content. You can
start with a left brace ({) to brace the command and content on the
outside. For example, the prelude defines the following rule for list items:

li { tex-cmd-before: "\item" }

• tex-tabcolsep:length: On tables sets the table column separation.

• tex-label-before, tex-label: If present issues a \label command be-
fore or after the outer element content. Usually handled already by the
prelude for any element with an identity.

• tex-tooltip: For links, issues a \mdtooltip command after the outer
content – this will show a small tooltip in PDF output.

A.8. Unicode characters
Madoko already recognizes all named html entities and translates them to the
appropriate LaTeX commands (Appendix A.9). If you often need a specific
unnamed unicode character, it can be convenient to define a shorthand for it in
the metadata:
llb: &#10214;
rrb: &#10215;

and then use those entity names instead. For example:

&llb;hi&rrb;.
{font-family: "Segoe UI Symbol"}

JhiK.



A.8. Unicode characters 103

A.8.1. Unicode in LaTeX
Unfortunately, in LaTeX these unicode characters might be unknown. You can
define your own definition for it using the LaTeX \mdDefineUnicode command
in a Tex Header metadata key:

Tex Header:
\mdDefineUnicode{10214}{\ensuremath{\llbracket}}
\mdDefineUnicode{10215}{\ensuremath{\rrbracket}}

If no definition is given, LaTeX will work but output the entity as is, i.e.
&#10214; for #llbracket. Under a unicode aware LaTeX, like XeLaTeX or Lu-
aLaTeX, it will call \mdUnicodeChar which will use the \char command to
directly select the glyph from the current font.

A.8.2. Unicode font selection in LaTeX
The previous examples works fine if only some unicode characters are used, but
becomes cumbersome if you need many unicode characters, for example, when
writing Japanese or Chinese characters as shown in our previous example in
Section 5.6.1.2. In this case, we need to select a font family in LaTeX that
supports the glyphs directly. For example, MS Gothic or SimSun:

~ { font-family:"MS Gothic"}
&#12371;&#12435;&#12395;&#12385;&#12399; is Japanese.
~

こんにちは is Japanese.

Instead of using explicit unicode characters, you can also directly use UTF8 text
files with the characters shown directly. For example:

Directly in unicode: [�����]{ font-family:"MS Gothic"}
(probably not visible in LaTeX monospace fonts)

Directly in unicode: こんにちは (probably not visible in LaTeX monospace
fonts)

If most of your document is using such characters, the \setmainfont command
of the fontspec package can set the default for the entire document instead of
using attributes. See the fontspec package documentation for more informa-
tion.

http://en.wikipedia.org/wiki/XeTeX
http://en.wikipedia.org/wiki/LuaTeX
http://en.wikipedia.org/wiki/LuaTeX
http://ftp.math.purdue.edu/mirrors/ctan.org/macros/latex/contrib/fontspec/fontspec.pdf


104 Chapter 6. Appendix

A.9. Recognized character entities
Madoko recognizes all HTML5 named character entities and translates them
correctly in LaTeX. Besides the standard named entities, Madoko also recognizes
some extra named entities, like bar, bslash, pagebreak, strut, etc. These are
denoted in the table with a star. The full list of predefined entities is:

number name glyph remark
34 quot ”
35 hash* #
36 dollar* $
37 perc* %
38 amp &
39 apos ’
40 lpar* (
41 rpar* )
42 ast* *
43 plus* +
47 fslash* /
60 lt <
62 gt >
92 bslash* \
94 caret* ^
95 underscore* _
96 grave* ‘
123 lcurly* {
124 bar* |
125 rcurly* }
126 tilde* ~
160 nbsp ~ in LaTeX
161 iexcl ¡
162 cent ¢
163 pound £
164 curren ¤
165 yen ¥
166 brvbar ¦
167 sect §
168 uml ¨
169 copy ©
170 ordf ª
171 laquo «
172 not ¬
173 shy
174 reg ®
175 macr ¯



A.9. Recognized character entities 105

176 deg °
177 plusmn ±
178 sup2 ²
179 sup3 ³
180 acute ´
181 micro µ
182 para ¶
183 middot ·
184 cedil  �
185 sup1 ¹
186 ordm º
187 raquo »
188 frac14 ¼
189 frac12 ½
190 frac34 ¾
191 iquest ¿
192 Agrave À
193 Aacute Á
194 Acirc Â
195 Atilde Ã
196 Auml Ä
197 Aring Å
198 AElig Æ
199 Ccedil Ç
200 Egrave È
201 Eacute É
202 Ecirc Ê
203 Euml Ë
204 Igrave Ì
205 Iacute Í
206 Icirc I�
207 Iuml Ï
208 ETH Ð
209 Ntilde Ñ
210 Ograve Ò
211 Oacute Ó
212 Ocirc Ô
213 Otilde Õ
214 Ouml Ö
215 times ×
216 Oslash Ø
217 Ugrave Ù
218 Uacute Ú
219 Ucirc Û



106 Chapter 6. Appendix

220 Uuml Ü
221 Yacute Ý
222 THORN Þ
223 szlig ß
224 agrave à
225 aacute á
226 acirc â
227 atilde ã
228 auml ä
229 aring å
230 aelig æ
231 ccedil ç
232 egrave è
233 eacute é
234 ecirc ê
235 euml ë
236 igrave ì
237 iacute í
238 icirc î
239 iuml ï
240 eth ð
241 ntilde ñ
242 ograve ò
243 oacute ó
244 ocirc ô
245 otilde õ
246 ouml ö
247 divide ÷
248 oslash ø
249 ugrave ù
250 uacute ú
251 ucirc û
252 uuml ü
253 yacute ý
254 thorn þ
255 yuml ÿ
256 Amacron Ā
257 amacron ā
258 Abreve Ă
259 abreve ă
260 Aogonek Ą
261 aogonek ą
262 Cacute Ć
263 cacute ć
264 Ccirc Ĉ



A.9. Recognized character entities 107

265 ccirc ĉ
266 Cdota Ċ
267 cdota ċ
268 Ccaron Č
269 ccaron č
270 Dcaron Ď
271 dcaron ď
272 Dstroke Ð
273 dstroke ð
274 Emacron Ē
275 emacron ē
276 Ebreve Ĕ
277 ebreve ĕ
278 Edota Ė
279 edota ė
280 Eogonek Ę
281 eogonek ę
282 Ecaron Ě
283 ecaron ě
284 Gcirc Ĝ
285 gcirc ĝ
286 Gbreve Ğ
287 gbreve ğ
288 Gdota Ġ
289 gdota ġ
290 Gcedil Ģ
291 gcedil ģ
292 Hcirc Ĥ
293 hcirc ĥ
294 Hstroke H
295 hstroke h
296 Itilde Ĩ
297 itilde ĩ
298 Imacron Ī
299 imacron ī
300 Ibreve Ĭ
301 ibreve ĭ
302 Iogonek Į
303 iogonek į
304 Idota İ
305 idotless ı
306 IJ IJ
307 ij ij
308 Jcirc Ĵ



108 Chapter 6. Appendix

309 jcirc ĵ
310 Kcedil Ķ
311 kcedil ķ
313 Lacute Ĺ
314 lacute ĺ
315 Lcedil Ļ
316 lcedil ļ
317 Lcaron Ľ
318 lcaron ľ
321 Lstroke Ł
322 lstroke ł
323 Nacute Ń
324 nacute ń
325 Ncedil Ņ
326 ncedil ņ
327 Ncaron Ň
328 ncaron ň
329 napos ’n
330 Neng Ŋ
331 neng ŋ
332 Omacron Ō
333 omacron ō
334 Obreve Ŏ
335 obreve ŏ
336 Odacute Ő
337 odacute ő
338 OElig Œ
339 oelig œ
340 Racute Ŕ
341 racute ŕ
342 Rcedil Ŗ
343 rcedil ŗ
344 Rcaron Ř
345 rcaron ř
346 Sacute Ś
347 sacute ś
348 Scirc Ŝ
349 scirc ŝ
350 Scedil Ş
351 scedil ş
352 Scaron S̆
353 scaron s̆
354 Tcedil Ţ
355 tcedil ţ



A.9. Recognized character entities 109

356 Tcaron Ť
357 tcaron ť
358 Tstroke �
359 tstroke �
360 Utilde Ũ
361 utilde ũ
362 Umacron Ū
363 umacron ū
364 Ubreve Ŭ
365 ubreve ŭ
366 Uring Ů
367 uring ů
368 Udacute Ű
369 udacute ű
370 Uogonek Ų
371 uogonek ų
372 Wcirc Ŵ
373 wcirc ŵ
374 Ycirc Ŷ
375 ycirc ŷ
376 Yuml Ÿ
377 Zacute Ź
378 zacute ź
379 Zdota Ż
380 zdota ż
381 Zcaron Ž
382 zcaron ž
383 slong ſ
402 fnof f
710 circ ^
732 tilde ~
818 lowline (in LaTeX becomes a short underscore)
913 Alpha A
914 Beta B
915 Gamma Γ
916 Delta ∆
917 Epsilon E
918 Zeta Z
919 Eta H
920 Theta Θ
921 Iota I
922 Kappa K
923 Lambda Λ
924 Mu M



110 Chapter 6. Appendix

925 Nu N
926 Xi Ξ
927 Omicron O
928 Pi Π
929 Rho P
931 Sigma Σ
932 Tau T
933 Upsilon Υ
934 Phi Φ
935 Chi X
936 Psi Ψ
937 Omega Ω
945 alpha α
946 beta β
947 gamma γ
948 delta δ
949 epsilon ϵ
950 zeta ζ
951 eta η
952 theta θ
953 iota ι
954 kappa κ
955 lambda λ
956 mu µ
957 nu ν
958 xi ξ
959 omicron o
960 pi π
961 rho ρ
962 sigmaf ς
963 sigma σ
964 tau τ
965 upsilon υ
966 phi φ
967 chi χ
968 psi ψ
969 omega ω
977 thetasym ϑ
978 upsih Υ
981 phisym ϕ
982 piv ϖ
8194 ensp 0.5em space in LaTeX
8195 emsp 1em space in LaTeX
8195 quad* \quad in LaTeX
8196 thicksp* \; in LaTeX



A.9. Recognized character entities 111

8197 medsp* \: in LaTeX
8201 thinsp \, in LaTeX
8203 strut* \strut in LaTeX
8203 pagebreak* \newpage in LaTeX
8204 zwnj
8205 zwj
8206 lrm
8207 rlm
8211 ndash –
8212 mdash —
8216 lsquo ‘
8217 rsquo ’
8218 sbquo ‚
8220 ldquo “
8221 rdquo ”
8222 bdquo „
8224 dagger †
8225 Dagger ‡
8226 bull •
8230 hellip …
8240 permil ‰
8242 prime ′
8243 Prime ′′
8249 lsaquo ‹
8250 rsaquo ›
8254 oline -
8260 frasl .2
8364 euro €
8450 CC C
8469 NN N
8473 PP P
8474 QQ Q
8477 RR R
8484 ZZ Z
8465 image ℑ
8472 weierp ℘
8476 real ℜ
8482 trade ™
8501 alefsym ℵ
8592 larr ←
8593 uarr ↑
8594 rarr →
8595 darr ↓
8596 harr ↔
8629 crarr ←↩



112 Chapter 6. Appendix

8656 lArr ⇐
8657 uArr ⇑
8658 rArr ⇒
8659 dArr ⇓
8660 hArr ⇔
8704 forall ∀
8706 part ∂
8707 exist ∃
8709 empty ∅
8711 nabla ∇
8712 isin ∈
8713 notin ̸∈
8715 ni ∋
8719 prod

∏
8721 sum

∑
8722 minus −
8727 lowast ∗
8730 radic

√

8733 prop ∝
8734 infin ∞
8736 ang ∠
8743 and ∧
8744 or ∨
8745 cap ∩
8746 cup ∪
8747 int

∫
8756 there4 ∴
8764 sim ∼
8773 cong ∼=
8776 asymp ≈
8800 ne ̸=
8801 equiv ≡
8804 le ≤
8805 ge ≥
8834 sub ⊂
8835 sup ⊃
8836 nsub ⊊
8838 sube ⊆
8839 supe ⊇
8853 oplus ⊕
8855 otimes ⊗
8869 perp ⊥
8901 sdot ·

8942 vellip
...



A.10. Definitions of predefined custom blocks 113

8968 lceil ⌈
8969 rceil ⌉
8970 lfloor ⌊
8971 rfloor ⌋
9001 lang ⟨
9002 rang ⟩
9312 circled1 À
9313 circled2 Á
9314 circled3 Â
9315 circled4 Ã
9316 circled5 Ä
9317 circled6 Å
9318 circled7 Æ
9319 circled8 Ç
9320 circled9 È
9321 circled10 É
9674 loz ♢
9824 spades ♠
9827 clubs ♣
9829 hearts ♡
9830 diams ♢
8617 hooklarr* ←↩
8718 bbox* ■
9633 box* □
9744 ballotbox* □
9745 ballotc* □3
9746 ballotx* □7
10003 checkmark* 3
10004 bcheckmark* 4
10007 xmark* 7
10008 bxmark* 8
128270 mglass* X ◦
NA smallskip small vertical space (\smallskip in LaTeX)
NA medskip medium vertical space (\medskip in LaTeX)
NA bigskip big vertical space (\bigskip in LaTeX)

A.10. Definitions of predefined custom blocks

All custom blocks are defined in the standard prelude. You can view this in the
file selection dropdown in madoko.net or download the online version

https://www.madoko.net/styles/prelude.mdk


114 Chapter 6. Appendix

A.11. License and attribution
Madoko is free software and available under the Apache 2.0 license from http://
madoko.codeplex.com

Madoko uses various other libraries under various other licenses to extend
its functionality.

• For Citation Style Language support, Madoko uses:

– Sax.js (XML parser), Copyright (c) Isaac Z. Schlueter and Contribu-
tors, ISC License, https://github.com/isaacs/sax-js (String.fromCodePoint
Copyright by Mathias Bynens, MIT License.)

– Bibtex-parser, Copyright (c) 2010 Henrik Muehe and Mikola Lysenko
and apcshields, MIT License, https://github.com/apcshields/
zotero-bibtex-parse

– Citeproc.js, Copyright (c) 2009-2014 Frank G. Bennett, Common
Public Attribution License, https://bitbucket.org/fbennett/citeproc-
js

– Locales-en-US.xml, Creative Commons Attribution-ShareAlike 3.0,
https://github.com/citation-style-language/locales

• The online environment Madoko.NET uses:

– Visual Studio.Code (the editor component), Copyright (c) Microsoft
Corporation, MIT License, https://github.com/Microsoft/vscode.

– Typo.js (spell checker), Copyright (c) 2011 by Christopher Finke,
Modified BSD License, https://github.com/cfinke/Typo.js/.

– The en-US dictionary, 2006, This dictionary is based on a subset of
the original English word list created by Kevin Atkinson for Pspell
and Aspell and covered by his original LGPL license. The affix file
is a heavily modified version of the original english.aff file which
was released as part of Geoff Kuenning’s Ispell and as such is covered
by his BSD license.

– wcwidth.js (unicode character width library), Copyright (C) 2012-
2014 by Jun Woong and Tim Oxley. Based on the original C library
by Markus Kuhn. MIT License, https://github.com/mycoboco/
wcwidth.js.

• When rendering Madoko to PDF or rendering mathematics, various other
programs are used that are usually installed with your TeX installation.
Some important ones are:

– dvisvgm, Copyright (c) Martin Gieseking, http://dvisvgm.bplaced.
net/

– dvipng, Copyright (c) 2002-2015 Jan-Ake Larsson,

https://madoko.codeplex.com/SourceControl/latest%23license.txt
http://madoko.codeplex.com
http://madoko.codeplex.com
https://github.com/isaacs/sax-js
https://github.com/apcshields/zotero-bibtex-parse
https://github.com/apcshields/zotero-bibtex-parse
https://bitbucket.org/fbennett/citeproc-js
https://bitbucket.org/fbennett/citeproc-js
https://github.com/citation-style-language/locales
https://github.com/Microsoft/vscode
https://github.com/cfinke/Typo.js/
https://github.com/mycoboco/wcwidth.js
https://github.com/mycoboco/wcwidth.js
http://dvisvgm.bplaced.net/
http://dvisvgm.bplaced.net/


A.11. License and attribution 115

– (xe,pdf)latex, Copyright (c) Donald M. Knuth, Peter Breiten-
lohner (eTeX), Han The Thanh (pdfTeX), and Jonathan Kew and
Khaled Hosny (XeTeX).

• This documentation uses the free Monarch butterfly image from Clkr-

freeVectorImages.

Thanks to all the authors for their excellent libraries! Special thanks to Martin
Gieseking with his help to make dvisvgm work well with Madoko math formulas.

https://pixabay.com/en/butterfly-monarch-male-orange-312295
https://pixabay.com/en/butterfly-monarch-male-orange-312295

	Introduction
	1.1. Madoko philosophy
	1.2. License

	Installation and usage
	Syntax: Inline elements
	3.1. Emphasis
	3.2. Code
	3.3. Sub- and super-script
	3.4. Strike-out
	3.5. Smart quotes, symbols, and direct links
	3.5.1. Advanced: changing quotes

	3.6. Links
	3.7. Images
	3.7.1. Image formats

	3.8. Footnotes
	3.9. Escape sequences
	3.9.1. Special escapes


	Syntax: Block elements
	4.1. Headings and rules
	4.2. Identities and labels
	4.2.1. A named heading

	4.3. Figures and Table Figures
	4.3.1. Advanced: sub-figures

	4.4. Lists
	4.5. Definition lists
	4.6. Block quotes
	4.7. Columns: putting blocks next to each other
	4.8. Code blocks
	4.8.1. Syntax highlighting
	4.8.2. Escaped code
	4.8.3. Advanced: Pretty code alignment
	4.8.4. Advanced: Customizing highlight colors
	4.8.5. Advanced: Custom syntax highlighting
	4.8.6. Advanced: taking over code blocks

	4.9. Tables
	4.9.1. Horizontal rules
	4.9.2. Long tables
	4.9.3. The width of columns
	4.9.4. Colors
	4.9.5. Book tables

	4.10. Mathematics
	4.10.1. Plain math and alignment
	4.10.2. Using packages
	4.10.3. Math commands
	4.10.4. Mathematics in HTML
	4.10.5. Advanced: Generic LaTeX snippets
	4.10.6. Advanced: Efficiency of math rendering
	4.10.7. Advanced: Preformatted math
	4.10.8. Setting all code to preformatted math

	4.11. Table of contents
	4.11.1. Advanced: Custom tables of contents

	4.12. Bibliography and Citations
	4.12.1. Bibliography styles
	4.12.2. Citation styles
	4.12.3. Bibliography tooltips and searches

	4.13. Custom blocks
	4.13.1. Predefined custom blocks

	4.14. Special block elements
	4.14.1. Advanced: including file fragments


	Syntax: Metadata and Styling
	5.1. Metadata
	5.1.1. Special metadata keys
	5.1.2. HTML keys
	5.1.3. LaTeX keys
	5.1.4. Conditional metadata

	5.2. Entities
	5.3. CSS Attributes and Styling
	5.3.1. CSS Attributes
	5.3.2. CSS formatting support
	5.3.3. CSS font family
	5.3.4. CSS colors
	5.3.5. Complex CSS Layout
	5.3.6. Floating blocks
	5.3.7. Special attributes
	5.3.8. Special attribute classes

	5.4. Metadata rules
	5.4.1. Names of predefined elements
	5.4.2. Advanced: Styling in CSS

	5.5. Numbering
	5.5.1. Advanced: Custom numbering
	5.5.2. Advanced: Reset counters
	5.5.3. Advanced: Display format

	5.6. Advanced: Replacement
	5.6.1. Advanced: Regular expression replacement
	Case conversion
	Mapping strings

	5.6.2. Advanced recursion and replacement


	Appendix
	A.1. Command line options
	A.2. Slide shows and presentations
	A.2.1. Using Reveal.js
	A.2.2. Using Beamer

	A.3. Advanced: Customizing citations
	A.4. Advanced: Not using BibTeX
	A.5. Advanced: packages in dynamic math mode
	A.6. Advanced: Using Prettify to highlight code
	A.7. Advanced styling in LaTeX
	A.8. Unicode characters
	A.8.1. Unicode in LaTeX
	A.8.2. Unicode font selection in LaTeX

	A.9. Recognized character entities
	A.10. Definitions of predefined custom blocks
	A.11. License and attribution


